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Angora: A finite-difference time-domain
simulation package

This is the user’s guide for Angora, a software package that computes numerical solutions to
electromagnetic radiation and scattering problems. It is based on the finite-difference time-
domain (FDTD) method, which one of the most popular approaches for solving Maxwell’s
equations of electrodynamics.
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1 Getting Started

Angora simulations are run by constructing a text file, called the configuration file that
specifies all aspects of the simulation. This file is then given as a command-line option to
the Angora executable angora; which reads the configuration file and produces the desired
output (see Chapter 4 [Execution], page 9).

Let’s start with a simple example. In the following, we will show how Angora can be
used to solve the problem of electromagnetic scattering from a sphere illuminated by a plane
wave. The geometry of the scattering problem is shown in Figure 1.1.

Figure 1.1: Scattering from a sphere illuminated by a plane wave incident from the -z
direction.

We start by creating a configuration file; say ‘sph_sc.cfg’. This file will be populated
by configuration options listed in the following. Some basic parameters of our simulation
are determined by the following lines (see Section 6.2 [Grid Properties], page 14 for details):

dx = 20e-9;

courant = 0.98;

grid_dimension_x = 1e-6;

grid_dimension_y = 1e-6;

grid_dimension_z = 1e-6;

pml_thickness_in_cells = 5;

num_of_time_steps = 1500;

The first variable, dx, is the uniform spatial step size in the FDTD discretization. The
second variable, courant, is the ratio of the time step to the maximum time step allowable
by the Courant condition. The next three variables determine the physical size of the
simulation grid in meters. The thickness of the absorbing layer (PML) is determined by the
pml_thickness_in_cells variable. The last line specifies the number of time steps in the
simulation.
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The sphere from which the electromagnetic plane wave will be scattered is created in
two steps. First, we define a spherical "shape object" using the Spheres variable (see
Section 6.3.2 [Spheres], page 20):

Shapes:

{

Spheres:

(

{

shape_tag = "mysphere";

center_coord_x = 0;

center_coord_y = 0;

center_coord_z = 0;

radius = 320e-9;

}

);

};

Next, the material filling the sphere is defined using the Materials variable (see
Section 6.4 [Materials], page 21):

Materials:

(

{

material_tag = "sph_mat";

rel_permittivity = 2.25;

electric_conductivity = 3e4; //in Siemens/m

rel_permeability = 1.7;

magnetic_conductivity = 4.2578e9; //in Ohm/m

}

);

The shape and material definitions are then combined in the Objects variable, and the
sphere is placed in the grid (see Section 6.5.1 [Objects], page 23):

SimulationSpace:

{

Objects:

(

{

material_tag = "sph_mat";

shape_tag = "mysphere";

}

);

};

With the above defitions, we have created a sphere of radius 320 nm and made of the
material specified by "sph_mat". Next, we define the waveform of the incident plane wave
using the Waveforms variable:

Waveforms:

{
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ModulatedGaussianWaveforms:

(

{

waveform_tag = "mywaveform";

modulation_type = "sine";

tau = 2.12662e-15;

f_0 = 5.88878e14;

}

);

};

We then create the plane wave incident from the -z direction with the above waveform as
its electric field using the PlaneWaves variable (see Section 6.10.1 [Plane Waves], page 64):

TFSF:

{

PlaneWaves:

(

{

theta = 180;

phi = 0;

psi = 90;

waveform_tag = "mywaveform";

}

);

};

Finally, we create a near-field-to-far-field transformer to calculate the scattered field in
the far zone using the PhasorDomainNFFFT variable (see Section 6.8 [Near-Field-to-Far-Field
Transformer], page 40):

PhasorDomainNFFFT:

(

{

num_of_lambdas = 1;

lambda_min = 509.09e-9;

lambda_max = 509.1e-9;

direction_spec = "theta-phi";

num_of_dirs_1 = 360;

dir1_min = 0;

dir1_max = 360;

num_of_dirs_2 = 1;

dir2_min = 0;

dir2_max = 0;

}

);

With the above definitions, the far field is calculated at the free-space wavelength 509.1
nm, and 360 equally-spaced angles on the xz plane. The output of the near-field-to-far-field
transformer is in HDF5 format, which can be read and manipulated using freely-available
tools. For more information, see Section 6.8 [Near-Field-to-Far-Field Transformer], page 40.
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The absolute value of the phasor component of the far-zone electric field (normalized by
1/r) at 509.1 nm is shown in a polar plot in Figure 1.2.

Figure 1.2: The absolute scattered electric field phasor amplitude on the xz plane at
509.1 nm.

The scattered electric field can also be obtained theoretically using Mie theory (see
[Matzler02], page 90), which is shown alongside the Angora solution in the above figure.
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2 Downloading

Angora is currently only available for the GNU/Linux operating system. If you would like to
port Angora to another operating system, please contact us at capoglu@angorafdtd.org.
Contributions are always welcome.

The latest version of Angora can be found at http://angorafdtd.org in source code
format, as well as binary format for x86 64 GNU/Linux systems.

mailto:capoglu@angorafdtd.org
http://angorafdtd.org
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3 Compilation and Installation

If you will be using Angora on a 64-bit x86 architecture with the GNU/Linux operating
system, you can simply download the binary version (both non-parallel and OpenMPI-
based parallel versions available) from the Angora website and start running simulations
right away.

If there is no precompiled Angora binary available for your system, you will have to
compile it from source. You will require the the following libraries on your system to
compile Angora: blitz++, libconfig, hdf5, and boost. If possible, use the package manager for
your specific GNU/Linux distribution (such as Synaptic in Ubuntu) to install the libraries
directly from the package repository. Most major distributions provide these libraries in
their package repositories. If you do not have root access to your system, you can install
these libraries in your home directory. The installation instructions for the libraries usually
provide detailed information on how to do this. For local installation, the usual trick is to
set the installation path by specifying the prefix variable in the Makefiles. This is done
either by using the ‘--prefix=local-path’ option when calling the package’s configure
script, or customizing make at the final stage with the ‘prefix=local-path’ command
option.

Once the dependency libraries are installed, the Angora package is ready for compilation.
Extract the package ‘angora-package-version.tar.gz’ using tar, and enter the created
directory:

johndoe@mysystem:~$ tar xvf angora-package-version.tar.gz

johndoe@mysystem:~$ cd angora-package-version

Run the configure script in this directory to create the Makefiles required to build
the package:

johndoe@mysystem:~/angora-package-version$ ./configure

If any of the dependency libraries was installed in a local directory, then add the option
‘--with-library-name=local-path-to-library’ to the above command line. For exam-
ple, if the blitz++ library was installed in ‘/home/johndoe/blitz-0.9’, then the option
to add is ‘--with-blitz=/home/johndoe/blitz-0.9’. Type ‘./configure --help’ in the
directory ‘angora-package-version’ for information on specifying the paths to the other
dependency libraries.

After the configure script finishes execution, compile and install Angora using the make
command:

johndoe@mysystem:~/angora-package-version$ make

If your system has multiple cores, you can speed up the compilation by executing make

in parallel. For example, you can use all 4 cores of your system by typing, instead of the
above line,

johndoe@mysystem:~/angora-package-version$ make -j 4

This might take a couple of minutes, depending on your system. After make finishes,
the executable angora will be located in the directory ‘angora-package-version’. If you
wish to install the package globally so that it can be run from anywhere, type

johndoe@mysystem:~/angora-package-version$ sudo make install

http://www.oonumerics.org/blitz/
http://www.hyperrealm.com/libconfig/
http://www.hdfgroup.org/HDF5/
http://www.boost.org/
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Obviously, this requires super-user privileges on your system. By default, the package is
installed in ‘/usr/local’; so the binary will reside in ‘/usr/local/bin’. If you don’t have
super-user privileges, you can install Angora in a local directory ‘full-path-to-inst-dir’
by typing

johndoe@mysystem:~/angora-package-version$ make prefix=full-path-to-inst-

dir install

The location ‘full-path-to-inst-dir’ should be an absolute path. After this, the
binary angora will be located in the directory ‘full-path-to-inst-dir/bin/’.

3.1 Enabling MPI Support

Parallel execution on multiple processors or cores is supported by Angora, provided that
the MPI (Message Passing Interface) libraries are installed on your system (e.g., OpenMPI
or MPICH2 or other). A precompiled binary version of Angora based on the OpenMPI
implementation is available on the Angora website.

If you are compiling Angora from source, you’ll have to enable the MPI feature at compile
time. This feature is disabled by default. You can enable MPI functionality in Angora by
adding the option ‘--with-mpi’ to the configure command line:

johndoe@mysystem:~/angora-package-version$ ./configure --with-mpi

For more information on launching Angora simulations on multiple processors or cores
using MPI, see Section 4.1 [Parallel Execution], page 9.

3.2 Building the Documentation

The GNU info documentation for Angora is automatically built and installed by make. If
you have the texi2html and latex2html utilities installed, you can create an HTML version
of the Angora documentation by typing

johndoe@mysystem:~/angora-package-version$ make html

If you have the texi2dvi command available (provided as part of the GNU Texinfo
package), you can also build a PDF version of the Angora documentation by typing

johndoe@mysystem:~/angora-package-version$ make pdf

Once built, both the HTML and PDF versions of the documentation will be located in
the subdirectory ‘doc/’.

http://www.open-mpi.org/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mathematik.uni-kl.de/~obachman/Texi2html/
http://www.latex2html.org/
http://www.gnu.org/software/texinfo/
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4 Execution

Angora operates by reading a text file, called the configuration file, that specifies the details
of the simulation. Every aspect of the simulation is configured by a related configuration
variable (or variable in short) in the configuration file; which comprises either a single line
or a number of lines. In general, an Angora simulation is run by putting the name of the
configuration file pertaining to the simulation as a command line option when calling the
angora executable:

johndoe@mysystem:~/angora-package-version$ ./angora path-to-config-file

If the Angora executable is run without any command-line options, it looks for the
configuration file named ‘angora.cfg’ in the same directory from which the executable is
run. See Chapter 6 [Configuration Variables], page 14, for details on configuration files.

4.1 Parallel Execution

If Angora is compiled with MPI support, then the standard MPI launcher (mpirun) can be
used to execute the Angora binary angora in parallel:

johndoe@mysystem:~/angora-package-version$ mpirun -n num-of-processors ./angora path-

to-config-file

For example, to run the simulation configured by ‘mysimulation.cfg’ using Angora
version 0.9 on 8 processors, one should type

johndoe@mysystem:~/angora-package-version$ mpirun -n 8 ./angora mysimulation.cfg

MPI support should be enabled in compile time in order to run simulations in parallel.
For details, see Section 3.1 [Enabling MPI Support], page 8. If you are using the OpenMPI-
based precompiled binary version of Angora, then the OpenMPI shared libraries must be in
your path before the binary ‘angora’ can be executed. This can either be done by installing
OpenMPI globally (using a package manager etc.), or adding the path to the OpenMPI
shared libraries to your LD_LIBRARY_PATH environment variable.

4.2 Check Mode

Angora can check a configuration file for syntactic and semantic errors, without actually
running the simulation. To do this, simply run Angora with the ‘--check’ or ‘-c’option:

johndoe@mysystem:~/angora-package-version$ ./angora --check path-to-config-

file

This reports any errors in the configuration-file syntax or invalid configuration options
(see Section 6.1 [Template Configuration File], page 14). The actual size of the simulation
does not have any effect on this operation; therefore it can be run on a single processor with
little memory.
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5 Configuration Format

Angora uses the libconfig library to read configuration variables regarding the simulation
from a text file. The text file, called the configuration file, has to conform to the libconfig
grammar; which is explained in greater detail at http://www.hyperrealm.com/libconfig/
libconfig_manual.html. Here, we will provide the minimum information necessary to
write configuration files for Angora simulations.

5.1 Variable Assignment

A variable in a configuration file is set using the following assignment:

name=value;

or:

name:value;

The trailing semicolon is required. Whitespace is not significant. Here, name is the
name of the variable, and value is its value; which may be a scalar value, an array, a group,
or a list. See Section 5.2 [Variable Types], page 10, for information on these value types.

The order in which variables are specified in the configuration file is insignificant, except
within the SimulationSpace variable (see Section 6.5 [Simulation Space], page 23). The
sub-variables of the SimulationSpace variable are processed in the order of appearance in
the configuration file. This is necessary because the user needs to be able to control the
order in which objects are placed in the grid, and predict the regions within an object that
will be overwritten by another object.

5.2 Variable Types

Angora simulation variables can be assigned C++-type scalar values, as well as more com-
plex values of type group, array, and list. The latter types are defined by the libconfig
library. Some of the text in this section is copied verbatim from the libconfig manual.
The libconfig library, along with its documentation, is distributed under the GNU Lesser
Public License.

5.2.1 Integer Values

Integers can be represented in one of two ways: as a series of one or more decimal digits
(‘0’ - ‘9’), with an optional leading sign character (‘+’ or ‘-’); or as a hexadecimal value
consisting of the characters ‘0x’ followed by a series of one or more hexadecimal digits (‘0’
- ‘9’, ‘A’ - ‘F’, ‘a’ - ‘f’).

Examples:

n_sx = 3;

offset = -4;

address = 0xFFFF;

5.2.2 Floating-Point Values

Floating point values consist of a series of one or more digits, one decimal point, an optional
leading sign character (‘+’ or ‘-’), and an optional exponent. An exponent consists of the
letter ‘E’ or ‘e’, an optional sign character, and a series of one or more digits.

http://www.hyperrealm.com/libconfig/
http://www.hyperrealm.com/libconfig/libconfig_manual.html
http://www.hyperrealm.com/libconfig/libconfig_manual.html
http://www.hyperrealm.com/libconfig/libconfig_manual.html
http://www.hyperrealm.com/libconfig/libconfig_manual.html#License
http://www.hyperrealm.com/libconfig/libconfig_manual.html#License
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Except in special circumstances, floating-point values in Angora are read and processed
in ‘double’ precision, which corresponds to roughly 15 decimal digits.

Examples:

f = 1.0;

origin = -3e-6;

prefactor = 5E10;

5.2.3 Boolean Values

Boolean values may have one of the following values: ‘true’, ‘false’, or any mixed-case
variation thereof.

Examples:

include_first_value = true;

include_last_value = FaLsE;

5.2.4 String Values

String values consist of arbitrary text delimited by double quotes. Literal double quotes
can be escaped by preceding them with a backslash: ‘\"’. The escape sequences ‘\\’, ‘\f’,
‘\n’, ‘\r’, and ‘\t’ are also recognized, and have the usual meaning.

In addition, the ‘\x’ escape sequence is supported; this sequence must be followed by
exactly two hexadecimal digits, which represent an 8-bit ASCII value. For example, ‘\xFF’
represents the character with ASCII code 0xFF.

No other escape sequences are currently supported.

Adjacent strings are automatically concatenated, as in C/C++ source code. This is useful
for formatting very long strings as sequences of shorter strings. For example, the following
constructs are equivalent:

• "The quick brown fox jumped over the lazy dog."

• "The quick brown fox"

" jumped over the lazy dog."

• "The quick" /* comment */ " brown fox " // another comment

"jumped over the lazy dog."

5.2.5 Groups

A group has the form:

{

name=value;

other_name=other_value;

...

}

Notice the curly brackets ‘{}’ around the variable assignments. Groups can contain any
number of variable assignments (see Section 5.1 [Variable Assignment], page 10), but each
variable must have a unique name within the group.

Example:
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{

shape_tag = "mysphere";

center_coord_x = 5e-6;

center_coord_y = 5e-6;

center_coord_z = 5e-6;

radius = 4e-6;

}

5.2.6 Arrays

An array has the form:

[ value, value, ... ]

Notice the square brackets ‘[]’ delimiting the comma-separated values. An array may
have zero or more elements, but the elements must all be scalar values of the same type.

Examples:

disabled_runs = [0,1,3];

output_variables = ["Ex","Ey"];

5.2.7 Lists

A list has the form:

( value, value, ... )

Notice the parantheses ‘()’ delimiting the comma-separated values. A list may have zero
or more elements, each of which can be a scalar value, an array, a group, or another list.
The values in a list can be of different types; however, in Angora, the list type is exclusively
used to contain a collection of group values. In Angora, the list type semantically represents
a collection of objects, each with a collection of properties set within their respective group
value. Here is an example:

Materials:

(

{

material_tag = "mat1";

rel_permittivity = 2.0;

},

{

material_tag = "mat2";

rel_permittivity = 2.5;

}

);

Here, the list structure named Materials contains two groups (each delimited by curly
brackets ‘{}’) separated by a comma. This defines two materials with different sets of
properties.

5.2.8 Comments

Three types of comments are allowed within a configuration:

• Script-style comments. All text beginning with a ‘#’ character to the end of the line is
ignored.
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• C-style comments. All text, including line breaks, between a starting ‘/*’ sequence and
an ending ‘*/’ sequence is ignored.

• C++-style comments. All text beginning with a ‘//’ sequence to the end of the line is
ignored.

As expected, comment delimiters appearing within quoted strings are treated as literal
text.

# Here’s a comment

MyGroup:

(/* This is

also a comment */

{

this_property = "myvalue";

// Another comment

}

);

5.2.9 Include Directives

A configuration file may “include” the contents of another file using an include directive.
This directive has the effect of inlining the contents of the named file at the point of inclusion.

An include directive must appear on its own line in the input. It has the form:

@include "filename"

Any backslashes or double quotes in the file name must be escaped as ‘\\’ and ‘\"’,
respectively.

For example, consider the following two configuration files:� �
# file: limits.cfg

back_coord_x = -5e-6;

front_coord_x = 6e-6;

left_coord_y = -5e-6;

right_coord_y = 6e-6;

lower_coord_z = -3e-6;

upper_coord_z = 4e-6;
 	� �
# file: mysim.cfg

RectangularBoxes:

(

{

shape_tag = "mybox";

@include "limits.cfg"

}

);
 	
Include files may be nested to a maximum of 10 levels; exceeding this limit results in a

runtime error.
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6 Configuration Variables

The variable assignments (or settings in libconfig terminology) in a configuration file reside
either at the uppermost level (called the Global level) or within a group structure (see
Section 5.2.5 [Groups], page 11). In the following, configuration variables will be character-
ized as either being a Global variable, or a Sub-variable of ParentVariable; where Parent-
Variable is the next parent variable upward in the hierarchy that has a name. The variable
ParentVariable can either be a group or a list (see Section 5.2.5 [Groups], page 11 and
Section 5.2.7 [Lists], page 12). Quite often, the immediate parent of a variable assignment
is an unnamed group; therefore the ParentVariable of that assignment is the list that con-
tains this unnamed group. For example, the ParentVariable of the variable material_tag

in the example in Section 5.2.7 [Lists], page 12 is Materials, since its immediate parent is
an unnamed group, but the list structure containing the unnamed group has a name (which
is Materials). On the other hand, the variable Materials is a Global variable; since it is
assigned at the uppermost level in a configuration file, outside any enclosing structure.

The configuration variable names are case sensitive; meaning that Materials and
materials are not the same.

Angora throws an error message for any missing variable or misspelled variable name.
This is crucial for ensuring that no optional configuration variable is omitted because of a
typo. The valid variable names are read into the Angora source code in compile time from
a template file ‘config_all.cfg’. This file, although not required at the time of execution,
is distributed with Angora for reference (see Section 6.1 [Template Configuration File],
page 14).

6.1 Template Configuration File

A file named ‘config_all.cfg’ is included in the Angora distribution, which includes all
the valid configuration variables. All variables in a given configuration file are checked
against ‘config_all.cfg’ and labeled invalid if a corresponding variable does not exist
in ‘config_all.cfg’. It should be stressed, however, that ‘config_all.cfg’ is not nec-
essary for the execution of Angora, but is necessary for its compilation. This is because
‘config_all.cfg’ is read into the source code of Angora in the compilation stage. The file
‘config_all.cfg’ is only distributed as a reference for the user’s convenience.

The file ‘config_all.cfg’ is installed in the directory ‘$(prefix)/share/angora/’ (see
Chapter 3 [Compilation and Installation], page 7). If Angora was installed without any
$(prefix) configuration option, the default location is ‘/usr/local/share/angora/’.

6.2 Grid Properties

Angora currently only supports a rectangular, Cartesian FDTD grid with equal grid spacing
in the x, y, and z directions. Mesh refinement is not yet supported; therefore the grid spacing
is uniform across the grid.
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6.2.1 Courant Factor

[Global variable]floating-point courant
Angora adopts a slightly modified form for the Courant factor, defined as

√
3
cΔt

Δx

where c=299792458 m/s is the speed of light in vacuum, and Δt and Δx are the
temporal and spatial step sizes (see Section 6.2.2 [Spatial Step Size], page 15). The
Courant factor should be less than 1.0 for stability. A common value for courant is
0.98.

6.2.2 Spatial Step Size

[Global variable]floating-point dx (units: m)
The spatial step size in the FDTD grid is specified by the dx variable. Currently only
cubic FDTD cells are supported; therefore the spatial step sizes in the x, y, and z
direction are all determined by dx.

6.2.3 Grid Dimensions

[Global variable]floating-point grid_dimension_x (units: m)

[Global variable]floating-point grid_dimension_y (units: m)

[Global variable]floating-point grid_dimension_z (units: m)

[Global variable]integer grid_dimension_x_in_cells

[Global variable]integer grid_dimension_y_in_cells

[Global variable]integer grid_dimension_z_in_cells
These variables determine the size of the Cartesian FDTD grid. The dimensions of the
grid can be specified either in meters, or in grid cells. For the latter, the _in_cells

suffix should be appended to the variable name. If the dimensions are given in meters,
the number of FDTD cells in the Cartesian FDTD grid in the x, y, and z directions
are rounded to the closest integer. If no perfectly-matched layers are specified (see
Section 6.2.4 [Perfectly-Matched Layer (PML)], page 15), the total number of FDTD
cells in the three-dimensional FDTD grid is equal to (grid dimension x in cells) x
(grid dimension y in cells) x (grid dimension z in cells).

6.2.4 Perfectly-Matched Layer (PML)

[Global variable]floating-point pml_thickness (units: m)

[Global variable]integer pml_thickness_in_cells
This variable sets the thickness of the perfectly-matched layers (PMLs) around the
grid in all directions. Further customization of the PML thickness is not yet sup-
ported. The thickness can be specified either in meters, or in grid cells. For the
latter, the _in_cells suffix should be appended to the variable name.

Typical PML thicknesses are 5 to 10 grid cells. If you do not want to place a PML layer
around the grid, just assign pml_thickness=0. Without a PML layer, the boundary of
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the FDTD grid acts as a perfect electric conductor (PEC). Other boundary conditions
(perfect magnetic conductor, periodic, etc.) will also be supported in the future.

With a PML definition, the total number of FDTD cells in the three-dimensional
FDTD grid becomes

(grid dimension x in cells+2*pml thickness in cells)

x (grid dimension y in cells+2*pml thickness in cells)

x (grid dimension z in cells+2*pml thickness in cells)

The computational burden per FDTD cell associated with the PML layer is roughly
three times that of the main grid.

Angora implements the convolution PML (CPML) formulation of the
complex-frequency shifted (CFS) PML (see [Roden00], page 90; [Kuzuoglu96],
page 90.)

[Global variable]floating-point cpml_feature_size (units:m, default:
max(grid_dimension_x,grid_dimension_y,grid_dimension_z))

[Global variable]floating-point cpml_feature_size_in_cells (default:
max(grid_dimension_x_in_cells,grid_dimension_y_in_cells,grid_
dimension_z_in_cells))

This variable specifies the maximum size of the scattering or radiating structure in
the FDTD grid. This size can be specified either in meters, or in grid cells. For the
latter, the _in_cells suffix should be appended to the variable name.

This information is used to determine the frequency-shifting parameter α in the CFS-
PML formulation. Following Berenger’s derivation (see [Berenger02], page 90), this
parameter is defined as

α = cε/w

where c is the velocity of propagation in the medium, ε is the absolute permittivity
(in F/m) in the medium, and w is the maximum size of the structure.

The above relationship follows essentially from the low-frequency behavior of the CFS-
PML. At low frequencies where the evanescent field around the structure dominates,
the CFS-PML reduces to a real stretch of coordinates without any absorption. This
helps the termination of evanescent fields, which are poorly handled by ordinary
PMLs.

6.2.5 Number of Time Steps

[Global variable]integer num_of_time_steps
This variable determines the number of time steps in the FDTD simulation.

6.2.6 Coordinate Origin

[Global variable]floating-point origin_x (units:m, default:
(grid dimension x+2*pml thickness)/2+1)

[Global variable]floating-point origin_y (units:m, default:
(grid dimension y+2*pml thickness)/2+1)
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[Global variable]floating-point origin_z (units:m, default:
(grid dimension z+2*pml thickness)/2+1)

[Global variable]integer origin_x_in_cells (default:
(grid dimension x in cells+2*pml thickness in cells)/2+1)

[Global variable]integer origin_y_in_cells (default:
(grid dimension y in cells+2*pml thickness in cells)/2+1)

[Global variable]integer origin_z_in_cells (default:
(grid dimension z in cells+2*pml thickness in cells)/2+1)

These variables set the origin of the coordinate system in the simulation. All other
coordinates in a configuration file are taken as relative to this origin. The coordinates
can be specified either in meters, or in grid cells. For the latter, the _in_cells suffix
should be appended to the variable name. These three numbers represent the Carte-
sian coordinates of the origin from the back-left-lower corner of the grid. In Figure 6.1,
the location of the coordinate origin in the FDTD grid is shown for (origin_x_in_
cells,origin_y_in_cells,origin_z_in_cells)=(2,3,2). The FDTD grid is com-
posed of (3x5x3) grids, and only the back (y=z=0), left (x=z=0), and lower (x=y=0)
surfaces are shown in the figure.

Figure 6.1: The location of the coordinate origin in the FDTD grid for (origin_x_
in_cells,origin_y_in_cells,origin_z_in_cells)=(2,3,2).

If the coordinates are given in meters, they are rounded to the closest integer multiple
of the spatial step size (see Section 6.2.2 [Spatial Step Size], page 15).

6.2.7 Dynamic Range

The following two variables are only relevant in movie recording (see Section 6.11.1 [Movie
Recording], page 74), wherein the floating-point field values on the movie frames are some-
times discretized to fit into 1 byte.
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[Global variable]floating-point max_field_value (default: 1.0)
This value specifies the maximum field value used in the discretization for 1-byte
movie recording (see Section 6.11.1 [Movie Recording], page 74).

[Global variable]floating-point dB_accuracy (default: automatic)
This value specifies the dynamic range (in dB) to be used in the discretization for
1-byte movie recording (see Section 6.11.1 [Movie Recording], page 74). For example,

dB_accuracy = -60;

tells Angora to discretize the field values in a dynamic range between the maximum
field value (specified by max_field_value above) and 60dB below that value. If dB_
accuracy is not specified, Angora tries to set this value automatically, based on its
best guess on the useful accuracy range in the simulation. This value can also be
read from the output of the movie recorder (see Section 6.11.1 [Movie Recording],
page 74).

6.3 Shapes

[Global variable]group Shapes
In Angora, a geometrical shape and the material filling that shape are two distinct
and independent elements of the definition of an object. The first of these elements is
defined in the Shapes variable, which is a group (see Section 5.2.5 [Groups], page 11).

Shapes:

{

RectangularBoxes:

(

...

...

);

Spheres:

(

...

...

);

...

...

};

In this example, two sub-variables RectangularBoxes and Spheres of the Shapes

group are shown. These are both list variables (see Section 5.2.7 [Lists], page 12).

Currently, rectangular boxes and spheres are the only basic shape classes defined in
Angora. Unions, intersections, and geometrical transformations of shapes, as well as more
basic shape classes will be added to Angora in the future. Please send any comments,
suggestions, and requests to help@angorafdtd.org.

mailto:help@angorafdtd.org
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6.3.1 Rectangular Boxes

[Sub-variable of Shapes]group RectangularBoxes
Rectangular boxes are defined using the RectangularBoxes variable, which is a list
structure under the Shapes group.

Shapes:

{

RectangularBoxes:

(

{

shape_tag = "mybox";

back_coord_x = -5e-6;

front_coord_x = 6e-6;

left_coord_y = -5e-6;

right_coord_y = 6e-6;

lower_coord_z = -3e-6;

upper_coord_z = 4e-6;

},

{

...

...

}

);

};

In this example, two rectangular box shapes are defined in two respective unnamed
groups; only the first being shown in complete detail.

[Sub-variable of RectangularBoxes]string shape_tag
This string variable assigns a name to the particular shape, so it can be referred
to later in the configuration file.

[Sub-variable of RectangularBoxes]floating-point back_coord_x (units:
m)

[Sub-variable of RectangularBoxes]floating-point front_coord_x (units:
m)

[Sub-variable of RectangularBoxes]floating-point left_coord_y (units:
m)

[Sub-variable of RectangularBoxes]floating-point right_coord_y (units:
m)

[Sub-variable of RectangularBoxes]floating-point lower_coord_z (units:
m)

[Sub-variable of RectangularBoxes]floating-point upper_coord_z (units:
m)

[Sub-variable of RectangularBoxes]floating-point
back_coord_x_in_cells
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[Sub-variable of RectangularBoxes]floating-point
front_coord_x_in_cells

[Sub-variable of RectangularBoxes]floating-point
left_coord_y_in_cells

[Sub-variable of RectangularBoxes]floating-point
right_coord_y_in_cells

[Sub-variable of RectangularBoxes]floating-point
lower_coord_z_in_cells

[Sub-variable of RectangularBoxes]floating-point
upper_coord_z_in_cells

These variables determine the minimum and maximum Cartesian coordinates of
the box in the x, y, and z directions relative to the grid origin (see Section 6.2.6
[Coordinate Origin], page 16). The units are either in meters or grid cells. For
the latter, the _in_cells suffix should be appended to the variable name.

6.3.2 Spheres

[Sub-variable of Shapes]group Spheres
Spheres are defined using the Spheres variable, which is a list structure under the
Shapes group.

Shapes:

{

Spheres:

(

{

shape_tag = "mysphere";

center_coord_x = 5e-6;

center_coord_y = 5e-6;

center_coord_z = 5e-6;

radius = 4e-6;

},

{

...

...

}

);

};

In this example, two spherical shapes are defined in two respective unnamed groups;
only the first being shown in complete detail.

[Sub-variable of Spheres]string shape_tag
This string variable assigns a name to the particular shape, so it can be referred
to later in the configuration file.
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[Sub-variable of Spheres]floating-point center_coord_x (units: m)

[Sub-variable of Spheres]floating-point center_coord_y (units: m)

[Sub-variable of Spheres]floating-point center_coord_z (units: m)

[Sub-variable of Spheres]floating-point center_coord_x_in_cells

[Sub-variable of Spheres]floating-point center_coord_y_in_cells

[Sub-variable of Spheres]floating-point center_coord_z_in_cells
These variables determine the Cartesian coordinate of the center of the sphere
relative to the grid origin (see Section 6.2.6 [Coordinate Origin], page 16). The
units are either in meters or grid cells. For the latter, the _in_cells suffix
should be appended to the variable name.

[Sub-variable of Spheres]floating-point radius (units: m)

[Sub-variable of Spheres]floating-point radius_in_cells
This variable determines the radius of the sphere. The units are either in meters
or grid cells. For the latter, the _in_cells suffix should be appended to the
variable name.

6.4 Materials

Currently, Angora only supports isotropic materials. Anisotropic materials may also
be supported in the future. Please send any comments, suggestions, and requests to
help@angorafdtd.org.

[Global variable]list Materials
The properties of a certain material type are specified in the Materials list (see
Section 5.2.7 [Lists], page 12).

Materials:

(

{

material_tag = "this_material";

rel_permittivity = 2.0;

rel_permeability = 1.0;

electric_conductivity = 0.0;

magnetic_conductivity = 0.0;

drude_pole_frequency = 0.0;

drude_pole_relaxation_time = 0.0;

transparent = false;

},

{

...

...

}

);

In this example, two materials are defined in two respective unnamed groups; only
the first being shown in complete detail.

mailto:help@angorafdtd.org
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[Sub-variable of Materials]string material_tag
This string variable assigns a name to the particular material, so it can be
referred to later in the configuration file.

[Sub-variable of Materials]floating-point rel_permittivity (default:
1.0)

This variable specifies the relative permittivity (or the dielectric constant) of the
material. In SI units, the absolute permittivity of the material is this variable
multiplied by the permittivity of free space (8.85418782E-12 F/m).

[Sub-variable of Materials]floating-point rel_permeability (default:
1.0)

This variable specifies the relative permeability (or the magnetic constant) of
the material. In SI units, the absolute permeability of the material is this
variable multiplied by the permeability of free space (4piE-7).

[Sub-variable of Materials]floating-point electric_conductivity
(units: S/m) (default: 0)

This variable specifies the electric conductivity (in Siemens/m or Mho/m) of
the material.

[Sub-variable of Materials]floating-point magnetic_conductivity
(units: Ohm/m) (default: 0)

This variable specifies the magnetic conductivity (in Ohm/m) of the material.

[Sub-variable of Materials]floating-point drude_pole_frequency (units:
radians) (default: 0)

This variable specifies the Drude pole frequency (in radians) of the material
(see Section 6.4.1 [Drude Dispersion], page 22).

[Sub-variable of Materials]floating-point drude_pole_relaxation_time
(units: sec) (default: 0)

This variable specifies the Drude pole relaxation time (in seconds) of the ma-
terial (see Section 6.4.1 [Drude Dispersion], page 22).

[Sub-variable of Materials]boolean transparent (default: false)
If set to false, any unspecified constitutive parameter is set to its default
value. If set to true, unspecified constitutive parameters become transparent,
meaning that when an object made up of this material is placed in the grid,
the unspecified constitutive parameters are kept unchanged.

6.4.1 Drude Dispersion

Angora supports frequency-dependent permittivities described by a Drude dispersion model
with a single pole. The relative permittivity of a material with a single Drude pole is given
by the expression

εr = εr∞ −
ω2
p

ω2 − jω/τp

where ω is the radian frequency, ωp is the Drude pole frequency (also known as the
plasma frequency) of the material, and τp is the Drude pole relaxation time of the material.
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Currently, Drude dispersion cannot be used for materials extending into the PML (see
Section 6.2.4 [Perfectly-Matched Layer (PML)], page 15). Consequently, the plane-wave in-
jector (see Section 6.10.1 [Plane Waves], page 64) and the near-field-to-far-field transformer
(see Section 6.8 [Near-Field-to-Far-Field Transformer], page 40) cannot handle planar layers
with Drude dispersion. This feature may be added in the future.

6.5 Simulation Space

[Global variable]group SimulationSpace
The SimulationSpace group is where all the objects inside the simulation space are
defined. If no SimulationSpace group is specified in the configuration file, the FDTD
simulation space consists entirely of vacuum.

SimulationSpace:

{

Objects:

(

...

...

);

RandomMaterials:

{

...

...

};

...

...

};

In the above example, only two of the sub-variables of the SimulationSpace group,
Objects and RandomMaterials, are shown. The sub-variable Objects is a list (see
Section 5.2.7 [Lists], page 12), whereas RandomMaterials is a group (see Section 5.2.5
[Groups], page 11).

The definitions in the SimulationSpace group are processed in the order of place-
ment. Thus, the user has complete control over which object is placed in the simu-
lation space first. As a consequence of this first-come-first-serve policy, objects can
overwrite regions of the simulation space occupied by other objects.

6.5.1 Objects

[Sub-variable of SimulationSpace]list Objects
The Objects list defines material objects to be placed in the simulation grid. An object
in this context is defined as a combination of two abstract ingredients: A previously-
defined shape (see Section 6.3 [Shapes], page 18), and a previously-defined material
to fill that shape (see Section 6.4 [Materials], page 21). The shape and material are
referred to using their shape and material tags, which are string variables assigned to
them in their definitions.
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Here is an example:

SimulationSpace:

{

Objects:

(

{

material_tag = "this_material";

shape_tag = "mysphere";

},

{

...

...

}

);

};

[Sub-variable of Objects]string material_tag
This string variable specifies the material that makes up the object. It should
match a previously-defined tag in a Materials definition (see Section 6.4 [Ma-
terials], page 21).

[Sub-variable of Objects]string shape_tag
This string variable specifies the geometrical shape of the object. It should
match a previously-defined tag in a Shapes definition (see Section 6.3 [Shapes],
page 18).

6.5.2 Planar Layers

[Sub-variable of SimulationSpace]list MaterialSlabs
The purpose of the MaterialSlab list is to introduce planar stratification into the
simulation grid. Currently, Angora only supports planar stratification along the z
direction. The handling of planar layers will be further improved in the future. Please
send any comments, suggestions, and requests to help@angorafdtd.org.

Here is an example:

SimulationSpace:

{

MaterialSlabs:

(

{

material_tag = "material1";

min_coord = 1e-6;

max_coord = "max";

},

{

...

...

}

mailto:help@angorafdtd.org
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);

};

In the above example, a material slab composed of material1 is placed in the grid.

[Sub-variable of MaterialSlabs]string material_tag
This variable specifies the material that makes up the slab. It should match
a previously-defined tag in a Materials definition (see Section 6.4 [Materials],
page 21).

[Sub-variable of MaterialSlabs]floating-point/string min_coord

[Sub-variable of MaterialSlabs]floating-point/string max_coord

[Sub-variable of MaterialSlabs]integer/string min_coord_in_cells

[Sub-variable of MaterialSlabs]integer/string max_coord_in_cells
These two floating-point variables specify the lower and upper coordinates of
the material slab with respect to the grid origin (see Section 6.2.6 [Coordinate
Origin], page 16). The units are either in meters or grid cells. For the latter,
the _in_cells suffix should be appended to the variable name. These variables
can also be assigned the string values "min" or "max"; which correspond to
the lower and upper boundaries of the simulation grid, respectively. If the
coordinates correspond to non-integer cell positions, they are rounded to the
nearest multiple of the spatial step size. However, the tangential components of
the electric tensor properties and the normal component of the magnetic tensor
properties are suitably interpolated (see [Hwang01], page 90).

If the FDTD grid is terminated by absorbing PML boundaries (see Section 6.2.4
[Perfectly-Matched Layer (PML)], page 15), then the MaterialSlab definitions ef-
fectively create infinite planar layers that extend horizontally toward infinity. When
the "min" or "max" strings are assigned as lower or upper coordinates of the slab, the
MaterialSlab definition amounts to placing a half space. When the MaterialSlab

variable is used, the incident beams (see Section 6.10 [Incident Beams], page 63) and
the scattered far field (see Section 6.8 [Near-Field-to-Far-Field Transformer], page 40)
are both calculated as if the material slab horizontally extends toward infinity.

6.5.3 Random Materials

[Sub-variable of SimulationSpace]group RandomMaterials
Independent samples from a random distribution of material properties with a spec-
ified correlation function can be generated and placed into the simulation grid us-
ing the RandomMaterials group. It contains sub-variables in the form of lists (see
Section 5.2.7 [Lists], page 12) that correspond to specific correlation functions. Cur-
rently, only the Whittle-Matern family of correlation functions is supported. More
correlation functions can be added in the future. Please send any comments, sugges-
tions, and requests to help@angorafdtd.org.

Although the spatial correlation of the generated random material regions can vary,
the joint probability density function of the material region is always a multivariate
normal (Gaussian) function.

mailto:help@angorafdtd.org
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[Sub-variable of RandomMaterials]list WhittleMaternCorrelated
The Whittle-Matern family of correlations (see [Rogers09], page 90) is a three-
parameter isotropic stochastic model that can represent a wide range of spatial
correlations. The Whittle-Matern correlation function B(r) for two points sep-
arated in space by a distance of r is given by the formula

B(r) = σ2 2
5/2−m(r/lc)

m−3/2

Γ(m− 3/2)
Km−3/2(r/lc)

where Km−3/2(·) is the modified Bessel function of the second kind and order
(m-3/2).

• m: The shape parameter that determines the overall behavior of the corre-
lation function. As m->infinity, the function approaches a Gaussian distri-
bution. If m=2, the function reduces to a decaying exponential. For m<3/2,
the distribution acquires an inverse power law dependence near the origin;
approximating a fractal distribution. For more details, see [Rogers09],
page 90.

• lc: (For m>3/2:) The correlation length. (For m<=3/2:) Loosely, the outer
length scale where the fractal approximation no longer holds.

• σ: (For m>3/2:) The standard deviation of the distribution at a given
point (r=0). (For m<=3/2:) In this range, the correlation function enters
the fractal regime with an inverse-power-law dependence at the origin (see
[Rogers09], page 90). The meaning of σ becomes more subtle in this regime.
It can loosely be associated with the amplitude of the correlation between
two points separated by lc.

The WhittleMaternCorrelated list creates regions with random material prop-
erties described by the Whittle-Matern correlation function above. Here is an
example of its usage:

SimulationSpace:

{

RandomMaterials:

{

WhittleMaternCorrelated:

(

{

constitutive_param_type = "rel_permittivity";

mean = 1.33;

std_dev = 0.05;

corr_len = 100e-9;

m = 2.0;

shape_tag = "rand_mat_shape";

random_seed = 0;

},

{

...

...
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}

);

};

};

[Sub-variable of WhittleMaternCorrelated]string
constitutive_param_type

The Whittle-Matern correlation function can describe the relative per-
mittivity, relative permeability, electric conductivity (in Siemens/m), or
magnetic conductivity (Ohm/m) of the material region. This is specified
by assigning "rel_permittivity", "rel_permeability", "electric_

conductivity", or "magnetic_conductivity" to the constitutive_

param_type string variable.

The constitutive parameters other than the one specified are not changed.
As a result, different random constitutive parameter distributions can be
superimposed using multiple random material definitions:

SimulationSpace:

{

RandomMaterials:

{

WhittleMaternCorrelated:

(

{

constitutive_param_type = "rel_permittivity";

mean = 1.33;

std_dev = 0.05;

corr_len = 100e-9;

m = 2.0;

shape_tag = "rand_mat_shape";

},

{

constitutive_param_type = "rel_permeability";

mean = 1.1;

std_dev = 0.05;

corr_len = 100e-9;

m = 2.0;

shape_tag = "rand_mat_shape";

}

);

};

};

Here, a random permittivity distribution and a random permeability dis-
tribution are overlaid within the same region in the grid.
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[Sub-variable of WhittleMaternCorrelated]floating-point mean
(units: none or S/m)

A baseline constant value equal to mean is added to the constitutive pa-
rameter described by the Whittle-Matern correlation function. If mean=0,
then the generated random distribution will have zero mean. However,
this will not necessarily be reflected to the actual constitutive parameter
values in the grid; since Angora will automatically clip the constitutive
parameters (permittivity, permeability, conductivity, etc.) from below to
either unity or zero to avoid instabilities. For this reason, mean should
be high enough to avoid this clipping as much as possible. As a rule of
thumb, mean should be 5 to 6 times the standard deviation (std_dev)
above unity or zero.

[Sub-variable of WhittleMaternCorrelated]floating-point std_dev
(units: none or S/m)

This variable specifies the σ parameter in the definition of the Whittle-
Matern correlation function.

[Sub-variable of WhittleMaternCorrelated]floating-point corr_len
(units: m)

[Sub-variable of WhittleMaternCorrelated]floating-point
corr_len_in_cells

This variable specifies the lc parameter in the definition of the Whittle-
Matern correlation function. The units are either in meters or grid cells.
For the latter, the _in_cells suffix should be appended to the variable
name.

[Sub-variable of WhittleMaternCorrelated]floating-point m
This variable specifies the m parameter in the definition of the Whittle-
Matern correlation function.

[Sub-variable of WhittleMaternCorrelated]string shape_tag
This string variable specifies the geometrical shape of the region occupied
by the random material. It should match a previously-defined tag in a
Shapes definition (see Section 6.3 [Shapes], page 18).

[Sub-variable of WhittleMaternCorrelated]integer/string
random_seed (default: determined by system time)

If you would like to create exactly the same random distribution each time
the simulation is run, you can assign an integer value to the random_seed
variable. Otherwise, you should not define this variable. This value is
used to initialize the random-number generator in Angora. If the same
seed is used to initialize the random-number generator, the same sequence
of random numbers will be generated each time, resulting in the same
random distribution.

If multiple simulation runs are present (see Section 6.14 [Multiple Simu-
lation Runs], page 87), you can create different random samples for each
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simulation run by assigning the string value "run_index" to random_

seed. This will initialize the intenal random-number generator with the
run index (ranging from 0 to number_of_runs-1) of each run. This way,
a different random distribution will be obtained in each simulation run;
but a distribution for a given simulation run will be fixed in subsequent
executions of Angora.

In Figure 6.2, a 2D slice of an example zero-mean sample distribution generated
by WhittleMaternCorrelated is shown in grayscale.

Figure 6.2: A 2D slice of an example zero-mean sample distribution. This
distribution can be assigned to different constitutive parameters of a material.

6.5.4 File Input

[Sub-variable of SimulationSpace]list MaterialsFromFiles
Material information within rectangular regions of the FDTD simulation grid can
be read from files using a MaterialsFromFiles list. This feature of Angora is still
under development. The user interface for this feature may change in the future, or be
superseded by another, more general interface. Currently, only a single constitutive
parameter can be read from a file; and dispersive or anisotropic materials are not
supported. These issues will be handled more comprehensively in a future version.
Please send any comments, suggestions, and requests to help@angorafdtd.org.

The material file should be in a simple custom binary format that Angora can recog-
nize. The order and type of each variable in the file is explained below:

• ‘x-extent’: The extent of the array in the x direction in grid cells (integer, 4
bytes)

• ‘y-extent’: The extent of the array in the y direction in grid cells (integer, 4
bytes)

mailto:help@angorafdtd.org
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• ‘z-extent’: The extent of the array in the z direction in grid cells (integer, 4
bytes)

• A floating-point array of length (x-extent) x (y-extent) x (z-extent). Each
value in this array is either of type double (8 bytes) or float (4 bytes), de-
pending on the datatype variable (see [datatype], page 33). The floating-point
array should be laid out in the file in column-major order, meaning that the x
dimension is looped over first, then the y dimension, and finally the z dimension.
This ordering is illustrated in Figure 6.3. The elements of the 2x2x2 array are
numbered from 0 to 7. These elements should be laid out in the binary file in
the same order:� �
...... 0 1 2 3 4 5 6 7 ......
 	

Figure 6.3: The illustration of the column-major ordering of a three-dimensional
array. The values indicated by numbers should be laid out in the file in the same
order.

Here is an example usage of MaterialsFromFiles:

SimulationSpace:

{

MaterialsFromFiles:

(
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{

file_name = "path_to_file/materialfile";

append_run_index_to_name = true;

file_extension = "mat";

constitutive_param_type = "rel_permittivity";

anchor = "center";

coord_x = 0;

coord_y = 0;

coord_z = 0;

datatype = "double";

max_new_materials = 1000;

},

{

...

...

}

);

};

[Sub-variable of MaterialsFromFiles]string file_name
This string specifies the name of the binary file from which the material in-
formation will be read. Path information can be prepended to the file name,
as shown in the example above. This path is interpreted as being relative to
input_dir (see Section 6.12 [Paths], page 86), unless it is preceded by a slash
‘/’.

[Sub-variable of MaterialsFromFiles]string file_extension (default: "")
This is the extension of the material file to be read. In the above example, the
file to be read is ‘path_to_file/materialfile.mat’.

[Sub-variable of MaterialsFromFiles]boolean append_run_index_to_name
This boolean flag becomes useful if there are multiple simulation runs
(see Section 6.14 [Multiple Simulation Runs], page 87), and a differ-
ent file needs to be read in each run. This can be accomplished by
appending the run index (which ranges from 0 to number_of_runs-1)
to the file name specified by file_name. For example, if there are
3 simulation runs (number_of_runs is 3) the above assignment will
tell Angora to read the file ‘path_to_file/materialfile0.mat’ in
the first run, ‘path_to_file/materialfile1.mat’ in the second, and
‘path_to_file/materialfile2.mat’ in the third.

This variable is required for all simulations (hence no default value) to help
the user prevent easy mistakes such as reading the same file for all simulation
runs unintentionally, reading ‘path_to_file/materialfile0.mat’ instead of
‘path_to_file/materialfile.mat’, etc.

[Sub-variable of MaterialsFromFiles]string constitutive_param_type
The values read from the input file can be assigned to one of the follow-
ing constitutive parameters: relative permittivity, relative permeability, elec-
tric conductivity, or magnetic conductivity. This is determined by assigning



Chapter 6: Configuration Variables 32

"rel_permittivity", "rel_permeability", "electric_conductivity", or
"magnetic_conductivity" to the constitutive_param_type string variable.
Electric conductivity is assumed to be in Siemens/m, and magnetic conductivity
is assumed to be in Ohm/m.

The constitutive parameters other than the one specified are not changed. As a
result, different constitutive parameter distributions can be superimposed using
multiple file-input definitions:

SimulationSpace:

{

MaterialsFromFiles:

(

{

file_name = "permittivity_file";

append_run_index_to_name = true;

constitutive_param_type = "rel_permittivity";

coord_x = 0;

coord_y = 0;

coord_z = 0;

datatype = "double";

},

{

file_name = "conductivity_file";

append_run_index_to_name = true;

constitutive_param_type = "electric_conductivity";

coord_x = 0;

coord_y = 0;

coord_z = 0;

datatype = "double";

}

);

};

Here, the contents of the files ‘permittivity_file’ and ‘conductivity_file’
are interpreted as the relative permittivity and electric conductivity of the same
region, respectively.

[Sub-variable of MaterialsFromFiles]string anchor (default: "center")
This string defines an anchor point inside the rectangular-box-shaped region
that is to be read from this file. This anchor is then assigned a coordinate in
the FDTD grid, determining the position of the rectangular box in the grid.
Valid values for anchor are:

• "center": center of the box

• "BLL": back-left-lower corner of the box

• "BLU": back-left-upper corner of the box

• "BRL": back-right-lower corner of the box

• "BRU": back-right-upper corner of the box



Chapter 6: Configuration Variables 33

• "FLL": front-left-lower corner of the box

• "FLU": front-left-upper corner of the box

• "FRL": front-right-lower corner of the box

• "FRU": front-right-upper corner of the box

Here, as usual, "back"/"front" refers to the x coordinate, "left"/"right" refers
to the y coordinate, and "lower"/"upper" refers to the z coordinate.

[Sub-variable of MaterialsFromFiles]floating-point coord_x (units: m)

[Sub-variable of MaterialsFromFiles]floating-point coord_y (units: m)

[Sub-variable of MaterialsFromFiles]floating-point coord_z (units: m)

[Sub-variable of MaterialsFromFiles]integer coord_x_in_cells

[Sub-variable of MaterialsFromFiles]integer coord_y_in_cells

[Sub-variable of MaterialsFromFiles]integer coord_z_in_cells
These values determine the Cartesian x,y, and z coordinates of the anchor
point (see above) assigned to the rectangular region to be read from the file.
The coordinates are measured with respect to the grid origin (see Section 6.2.6
[Coordinate Origin], page 16). The units are either in meters or grid cells.
For the latter, the _in_cells suffix should be appended to the variable name.
If the coordinates correspond to non-integer cell positions, the closest integer
positions are chosen.

[Sub-variable of MaterialsFromFiles]string datatype
The datatype for the values read from the file is determined by this variable.
It should be either "double" (8 bytes) or "float" (4 bytes).

[Sub-variable of MaterialsFromFiles]integer max_new_materials (default:
1000)

Internally, Angora uses material indexing to reduce memory use for material
arrays. Every constitutive parameter in the grid can only take a distinct set
of values, represented by a variable of type unsigned short (2 bytes) that
can range from 0 to 65,535. Instead of storing a floating-point value (which
is usually 4 or 8 bytes) for a permittivity value at a point, Angora stores an
index that represents the permittivity at that point. The same applies to other
constitutive parameters (relative permeability, electric conductivity, etc.)

Each time a material region is read into the FDTD grid using
MaterialsFromFiles, a fixed number of new constitutive parameter values
are defined between the minimum and maximum values found in the file.
Because of this discretization, some loss of information is inevitable. The
number of new materials is determined by the variable max_new_materials;
which is by equal to 1000 default. With the default value, the upper limit
for the number of materials will be reached after about 65 material regions
are inserted into the grid. If you wish to insert more material regions, and
the dynamic ranges of constitutive parameters in your material files are not
large, you can decrease max_new_materials. Alternatively, you may consider
combining multiple material regions into a single region.
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6.5.5 Ground Planes

[Sub-variable of SimulationSpace]list GroundPlanes
Infinitely thin perfect-electric-conductor (PEC) sheets can be placed in the grid using
a GroundPlanes list. Currently, only z-oriented (parallel to the xy plane) sheets at
integer (full-cell) positions are supported.

SimulationSpace:

{

GroundPlanes:

(

{

coord = 0;

},

{

...

...

}

);

};

[Sub-variable of GroundPlanes]floating-point coord (units: m)

[Sub-variable of GroundPlanes]integer coord_in_cells
This variable specifies the z-coordinate of the ground plane with respect to
the grid origin (see Section 6.2.6 [Coordinate Origin], page 16). The units are
either in meters or grid cells. For the latter, the _in_cells suffix should be
appended to the variable name. If the coordinate corresponds to a non-integer
cell position, the closest integer position is chosen.

The GroundPlanes variable also updates the layering (stratification) information in
the grid, much like MaterialSlabs (see Section 6.5.2 [Planar Layers], page 24).

6.6 Waveforms

[Global variable]group Waveforms
In Angora, a time waveform is defined as a self-contained structure that can be used
by other structures; such as a Hertzian dipole source or a plane-wave injector. The
library of available time waveforms will be expanded in the future. Please send any
comments, suggestions, and requests to help@angorafdtd.org.

An example usage of Waveforms:

Waveforms:

{

GaussianWaveforms:

(

{

...

}

);

mailto:help@angorafdtd.org
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DifferentiatedGaussianWaveforms:

(

{

...

}

);

...

...

};

6.6.1 Gaussian Waveforms

[Sub-variable of Waveforms]list GaussianWaveforms
This variable is used to define Gaussian time waveforms given by the formula

f(t) = A exp

(−(t− nττ)2
2τ 2

)
The peak, 10%-amplitude (-20 dB power), and 1%-amplitude (-40 dB power) fre-
quencies in the spectrum of the Gaussian are ω = 0, ω = 2.15/τ, ω = 3.035/τ ,
respectively.

Gaussian waveforms are defined as follows:

Waveforms:

{

GaussianWaveforms:

(

{

waveform_tag = "my_waveform";

amplitude = 1.0;

tau = 2.1291e-15;

delay = 3;

},

{

...

...

}

);

};

[Sub-variable of GaussianWaveforms]string waveform_tag
This is the string tag by which the waveform will later be referred to by another
structure that requires a time waveform in its definition.

[Sub-variable of GaussianWaveforms]floating-point amplitude (default:
1.0)

This specifies the variable A in the above equation defining the Gaussian wave-
form.
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[Sub-variable of GaussianWaveforms]floating-point tau (units: sec)
This specifies the variable τ in the above equation defining the Gaussian wave-
form.

[Sub-variable of GaussianWaveforms]floating-point delay (default: 0.0)
This specifies the variable nτ in the above equation defining the Gaussian wave-
form.

6.6.2 Differentiated-Gaussian Waveforms

[Sub-variable of Waveforms]list DifferentiatedGaussianWaveforms
This variable is used to define differentiated Gaussian time waveforms, given by the
formula

f(t) = A
dn

dtn

[
exp

(−(t− nττ)2
2τ 2

)]
= A (

−1
τ
√
2
)nHn

(
t− nττ
τ
√
2

)
exp

(−(t− nττ)2
2τ 2

)

where Hn(x) are the (physicists’) Hermite polynomials.

The peak frequency in the spectrum of the differentiated-Gaussian is ω = 1/τ , the
10%-amplitude (-20 dB power) frequencies are ω = 0.06/τ and ω = 2.76/τ ; and the
1%-amplitude (-40 dB power) frequencies are ω = 0.006/τ and ω = 3.57/τ .

Differentiated Gaussian waveforms are defined as follows:

Waveforms:

{

DifferentiatedGaussianWaveforms:

(

{

waveform_tag = "my_waveform";

amplitude = 1.0;

tau = 2.1291e-15;

delay = 3;

n_diff = 3;

},

{

...

...

}

);

};

[Sub-variable of DifferentiatedGaussianWaveforms]string waveform_tag
This is the string tag by which the waveform will later be referred to by another
structure that requires a time waveform in its definition.

[Sub-variable of DifferentiatedGaussianWaveforms]floating-point
amplitude (default: 1.0)

This specifies the variable A in the above equation defining the differentiated
Gaussian waveform.

http://en.wikipedia.org/wiki/Hermite_polynomial#Definition
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[Sub-variable of DifferentiatedGaussianWaveforms]floating-point tau
(units: sec)

This specifies the variable τ in the above equation defining the differentiated
Gaussian waveform.

[Sub-variable of DifferentiatedGaussianWaveforms]floating-point delay
(default: 0.0)

This specifies the variable nτ in the above equation defining the differentiated
Gaussian waveform.

[Sub-variable of DifferentiatedGaussianWaveforms]integer n_diff
This specifies the order of differentiation n in the above equation defining the
differentiated Gaussian waveform.

6.6.3 Modulated-Gaussian Waveforms

[Sub-variable of Waveforms]list ModulatedGaussianWaveforms
This variable is used to define sinusoidally-modulated Gaussian time waveforms, given
by the formula

f(t) = A g(2πf0(t− nττ) + φ) exp

(−(t− nττ)2
2τ 2

)
where the function g(t) is a sinusoidal function, being either sin(t) or cos(t) .

The peak frequency in the spectrum of the modulated-Gaussian is ω = ω0 = 2πf0
, the 10%-amplitude (-20 dB power) frequencies are ω = ω0 ± 2.15/τ ; and the
1%-amplitude (-40 dB power) frequencies are ω = ω0 ± 3.035/τ . A MATLAB
script named ‘mod_gaussian_wf.m’ is distributed as part of the Angora package,
which calculates the center frequency f0 and the time constant τ of a modulated-
Gaussian waveform that has the desired lower and upper cutoff wavelengths, and
the desired amount of attenuation at these wavelengths. It also outputs the -40 dB
wavelength and the suggested maximum spatial time step in the simulation (which
is the -40 dB wavelength divided by 15). This script is installed in the directory
‘$(prefix)/share/angora/’ (see Chapter 3 [Compilation and Installation], page 7).
If Angora was installed without any $(prefix) configuration option, the default lo-
cation is ‘/usr/local/share/angora/’. This script can also be downloaded directly
from the Angora website (link here).

Modulated Gaussian waveforms are defined as follows:

Waveforms:

{

ModulatedGaussianWaveforms:

(

{

waveform_tag = "my_waveform";

modulation_type = "sine";

amplitude = 1.0;

tau = 2.1291e-15;

f_0 = 5.8929e14;

http://www.angorafdtd.org/scripts.html
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delay = 3;

phase = 90;

differentiated = false;

},

{

...

...

}

);

};

[Sub-variable of ModulatedGaussianWaveforms]string waveform_tag
This is the string tag by which the waveform will later be referred to by another
structure that requires a time waveform in its definition.

[Sub-variable of ModulatedGaussianWaveforms]string modulation_type
If assigned "sine", the modulation function g(t) in the above equation becomes
a sine. If assigned "cosine", it becomes a cosine.

[Sub-variable of ModulatedGaussianWaveforms]floating-point amplitude
(default: 1.0)

This specifies the variable A in the above equation defining the modulated
Gaussian waveform.

[Sub-variable of ModulatedGaussianWaveforms]floating-point tau (units:
sec)

This specifies the variable τ in the above equation defining the modulated Gaus-
sian waveform.

[Sub-variable of ModulatedGaussianWaveforms]floating-point f_0 (units:
Hz)

This specifies the modulation frequency f0 in the above equation defining the
modulated Gaussian waveform.

[Sub-variable of ModulatedGaussianWaveforms]floating-point delay
(default: 0.0)

This specifies the variable nτ in the above equation defining the modulated
Gaussian waveform.

[Sub-variable of ModulatedGaussianWaveforms]floating-point phase
(units: degrees, default: 0.0)

This specifies the extra phase φ in the above equation defining the modulated
Gaussian waveform. This phase should be specified in degrees, which is then
converted internally to radians, which are the actual units of φ .

[Sub-variable of ModulatedGaussianWaveforms]boolean differentiated
(default: false)

If set to true, the waveform in the above equation is differentiated once with
respect to time.
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6.7 Point Sources

[Global variable]list PointSources
"Infinitesimal" electric dipole sources (also called Hertzian dipoles) can be simulated
in Angora using the PointSources list.

A Hertzian dipole at position (x0, y0, z0) is characterized by the following current
distribution in space:

J(x, y, z; t) = a j0(t) δ(x− x0)δ(y − y0)δ(z − z0)

where δ(x) is the Dirac delta function. The vector a determines the orientation of the
dipole, which can be along the x, y, or z directions. The prefactor j0(t) is called the
current moment of the dipole, with the units (Ampere*m).

Here is an example usage of PointSources:

PointSources:

(

{

coord_x = 0;

coord_y = 0;

coord_z = 0;

source_orientation = "y_directed";

waveform_tag = "moment_waveform";

j_0 = 1.0;

},

{

...

...

}

);

[Sub-variable of PointSources]floating-point coord_x (units: m)

[Sub-variable of PointSources]floating-point coord_y (units: m)

[Sub-variable of PointSources]floating-point coord_z (units: m)

[Sub-variable of PointSources]integer coord_x_in_cells

[Sub-variable of PointSources]integer coord_y_in_cells

[Sub-variable of PointSources]integer coord_z_in_cells
These variables specify the Cartesian x, y, and z coordinates of the Hertzian
dipole with respect to the grid origin (see Section 6.2.6 [Coordinate Origin],
page 16). The units are either in meters or grid cells. For the latter, the _

in_cells suffix should be appended to the variable name. If the coordinates
correspond to non-integer cell positions, the closest integer positions are chosen.

[Sub-variable of PointSources]string source_orientation
This string specifies the spatial orientation of the Hertzian dipole. It should be
"x_directed", "y_directed", or "z_directed".
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[Sub-variable of PointSources]string waveform_tag
This string variable specifies the waveform of the current moment j0(t) . The
waveform is interpreted in (Ampere*m) units. This should match a previously-
defined tag in a Waveforms definition (see Section 6.6 [Waveforms], page 34).

[Sub-variable of PointSources]floating-point j_0 (units: Ampere/m,
default: 1.0)

This is an extra prefactor applied to the current moment waveform j0(t) .

6.8 Near-Field-to-Far-Field Transformer

In many electromagnetic problems, it is of interest to calculate the radiated (or far-zone)
field scattered from (or radiated by) the structures inside the grid. The radiated field is
defined as the asymptotic form of the electric field at large distances, which decays as 1/r
and propagates locally like a plane wave. Although the radial dependence is trivial in the
far field, the angular dependence is highly variable. In finite numerical solution methods
such as FDTD and FEM, it is only the near-field that is available in the computation
grid. It is hugely impractical to extend the computation grid to large distances where the
field assumes an asymptotic form. Luckily, certain theorems of electromagnetics (Huygens’
principle, equivalence theorem, etc.) allow the calculation of the far field using this near field
information. This procedure is called a near-field-to-far-field transform (NFFFT). There
are two main types of NFFFTs. In the first type, the far-field waveforms are calculated
directly in time domain. In the second, the frequency (or phasor) components in the Fourier
decomposition of the far-field waveforms are calculated at a number of frequencies. Angora
features both time-domain and phasor domain NFFFTs.

6.8.1 Time-Domain Near-Field-to-Far-Field-Transformer

In the time-domain NFFFT, the far-field waveforms (normalized by the distance r, and
advanced in time by r/c ) are calculated directly using time-domain Green’s functions for
the particular space. Currently, the time-domain NFFFT supports up to three lossless
infinite planar material layers with only permittivity variations.

The time-domain NFFFT should be used when the far-field waveforms are to be com-
puted over only a few observation directions. The additional computational burden per
observation direction is much larger than that of the phasor-domain NFFFT. The format
used for the time-domain far-field output is HDF5 (Hierarchical Data Format) (http://
www.hdfgroup.org/HDF5/). The HDF5 format was chosen for its standard interface, and
the availability of free software tools for inspecting and modifying HDF5 output. The HDF5
output created by the time-domain NFFFT is explained in more detail in Section 6.8.1.1
[HDF5 Content of Time-Domain NFFFT Output], page 44.

The radiated electric field can be expressed in the form

Ēr(r, θ, φ; t) = Ē(θ, φ; t− r/c)/r .

The time-domain NFFFT only calculates the angle and time-dependent part of the above
expression, namely, Ē(θ, φ; t) .

http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
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[Global variable]string td_nffft_output_dir (default: "nffft/td")
This determines the subdirectory in which all the time-domain-NFFFT output will
be placed. Unless it has a slash ‘/’ up front; this path is interpreted as being relative
to output_dir (see Section 6.12 [Paths], page 86).

td_nffft_output_dir = "nffft/td";

TimeDomainNFFFT:

{

...

...

};

[Global variable]list TimeDomainNFFFT
Time-domain NFFFTs are defined inside a TimeDomainNFFFT list, each within its own
group:

TimeDomainNFFFT:

(

{

theta = 36;

phi = 57;

write_hertzian_dipole_far_field = false;

nffft_back_margin_x_in_cells = 3;

nffft_front_margin_x_in_cells = 3;

nffft_left_margin_y_in_cells = 3;

nffft_right_margin_y_in_cells = 3;

nffft_lower_margin_z_in_cells = 3;

nffft_upper_margin_z_in_cells = 3;

far_field_origin_x = 0;

far_field_origin_y = 0;

far_field_origin_z = 0;

far_field_dir = "my_dir";

far_field_file_name = "FarField_td";

far_field_file_extension = "hd5";

append_group_index_to_file_name = true;

},

{

...

...

}

);

[Sub-variable of TimeDomainNFFFT]floating-point theta (units:
degrees)

[Sub-variable of TimeDomainNFFFT]floating-point phi (units: degrees)
The direction at which the time-domain far field will be calculated is expressed
in terms of the traditional spherical-coordinate variables (θ, φ). The first of
these angles is the zenith angle, while the second is the azimuth angle. In
Figure 6.4, the definitions of these angles are shown schematically. The theta
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variable specifies the zenith angle in degrees. Although this angle is traditionally
defined between 0 and 180deg, theta can be assigned any negative or positive
value. The phi variable specifies the azimuth angle in degrees. Although this
angle is traditionally defined between 0 and 360deg, phi can be assigned any
negative or positive value.

[Sub-variable of TimeDomainNFFFT]boolean
write_hertzian_dipole_far_field (default: false)

If set to true, the theoretical far field waveforms due to the Hertzian point
sources (see Section 6.7 [Point Sources], page 39) in the simulation grid are
also written into the output file. Any planar stratification up to three lossless
layers with permittivity variations is accounted for in the calculation of the
theoretical far field, but the scattering from any other structure inside the grid
is ignored. As such, this feature can be (and has been) used to test the time-
domain NFFFT.

[Sub-variable of TimeDomainNFFFT]floating-point
nffft_back_margin_x (units:m)

[Sub-variable of TimeDomainNFFFT]floating-point
nffft_front_margin_x (units:m)

[Sub-variable of TimeDomainNFFFT]floating-point
nffft_left_margin_y (units:m)

[Sub-variable of TimeDomainNFFFT]floating-point
nffft_right_margin_y (units:m)

[Sub-variable of TimeDomainNFFFT]floating-point
nffft_lower_margin_z (units:m)

[Sub-variable of TimeDomainNFFFT]floating-point
nffft_upper_margin_z (units:m)

[Sub-variable of TimeDomainNFFFT]integer
nffft_back_margin_x_in_cells (default: 3)

[Sub-variable of TimeDomainNFFFT]integer
nffft_front_margin_x_in_cells (default: 3)

[Sub-variable of TimeDomainNFFFT]integer
nffft_left_margin_y_in_cells (default: 3)

[Sub-variable of TimeDomainNFFFT]integer
nffft_right_margin_y_in_cells (default: 3)

[Sub-variable of TimeDomainNFFFT]integer
nffft_lower_margin_z_in_cells (default: 3)

[Sub-variable of TimeDomainNFFFT]integer
nffft_upper_margin_z_in_cells (default: 3)

The near field is collected over the surface of a rectangular prism in the grid,
called the NFFFT surface. This surface should enclose all the scattering and/or
radiating structures in the grid, as well as the total-field/scattered-field surface
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(see Section 6.10 [Incident Beams], page 63). By default, this rectangular box is
placed 3 grid cells away from the PML boundary (see Section 6.2.4 [Perfectly-
Matched Layer (PML)], page 15). You can specify different margins to reduce
the computational burden associated with the NFFFT. This burden is directly
proportional to the surface area of the box. The margins can be specified in
meters or in grid cells. For the latter, the _in_cells suffix should be appended
to the variable name. If given in meters, the margins are rounded to the nearest
multiple of the spatial step size.

[Sub-variable of TimeDomainNFFFT]floating-point
far_field_origin_x (units: m, default: 0)

[Sub-variable of TimeDomainNFFFT]floating-point
far_field_origin_y (units: m, default: 0)

[Sub-variable of TimeDomainNFFFT]floating-point
far_field_origin_z (units: m, default: 0)

[Sub-variable of TimeDomainNFFFT]floating-point
far_field_origin_x_in_cells (default: 0)

[Sub-variable of TimeDomainNFFFT]floating-point
far_field_origin_y_in_cells (default: 0)

[Sub-variable of TimeDomainNFFFT]floating-point
far_field_origin_z_in_cells (default: 0)

These variables set the coordinates of the point relative to which the far field will
be calculated. The distance r in [eq:far field angle dependence time domain],
page 40 is with respect to this point. The coordinates of the far-field origin are
with respect to the grid origin (see Section 6.2.6 [Coordinate Origin], page 16).
The units are either in meters or grid cells. For the latter, the _in_cells suffix
should be appended to the variable name.

[Sub-variable of TimeDomainNFFFT]string far_field_dir (default: "")
This determines the subdirectory in which this individual far-field file will be
placed. Unless it has a slash ‘/’ up front; this path is interpreted as being rela-
tive to td_nffft_output_dir (see [td nffft output dir], page 40). By default,
no subdirectory is created inside td_nffft_output_dir.

[Sub-variable of TimeDomainNFFFT]string far_field_file_name
(default: "FarField_td")

This determines the base string in the full name of the far-field file. Other
information is appended to the name of the file to differentiate individual far-
field files (see the example below).

[Sub-variable of TimeDomainNFFFT]string far_field_file_extension
(default: "hd5")

This is the extension of the far-field file name. If assigned the value "", no
extension is added to the file. The HDF5 extension "hd5" is applied by default.

Here is an example far-field file name:
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FarField_td_0_1.hd5

The base string in the name of the file ("FarField_td") is specified by the far_field_
file_name variable. The two integers that follow are the run index (see Section 6.14
[Multiple Simulation Runs], page 87) and the index of the time-domain NFFFT inside
the TimeDomainNFFFT list. For example, if there are two groups (two NFFFTs) in
the TimeDomainNFFFT list, the first one will write into

FarField_td_0_0.hd5

while the second will write into

FarField_td_0_1.hd5

If there are two simulation runs (i.e., number_of_runs is equal to 2 – see Section 6.14
[Multiple Simulation Runs], page 87), then the files created in the second run will
have 1 instead of 0 as the first integer in the above file names. Finally, the extension
("hd5") of the line files is determined by the variable far_field_file_extension.

[Sub-variable of TimeDomainNFFFT]boolean
append_group_index_to_file_name (default: true)

If this is set to false, the second integer in the filename (see above) and the
underscore preceding it are not included in the filename. It is set to true by
default. If this variable is set to false and there are multiple groups (time-
domain NFFFTs), there will be a name clash, and the output will be undefined.

6.8.1.1 HDF5 Content of Time-Domain NFFFT Output

The HDF5 file created as the output of the time-domain NFFFT can be viewed and modified
using freely-available tools. One of these tools is HDFView, provided by the HDF Group.
MATLAB also has built-in functions and tools that handle HDF5 files. For reference, a
MATLAB script named ‘hdf5_read.m’ is distributed as part of the Angora package, which
reads an HDF5 dataset from an HDF5 file into a MATLAB array. This script is installed in
the directory ‘$(prefix)/share/angora/’ (see Chapter 3 [Compilation and Installation],
page 7). If Angora was installed without any $(prefix) configuration option, the default
location is ‘/usr/local/share/angora/’. This script can also be downloaded directly from
the Angora website (link here). For example, if you want to read the dataset named theta

from the file ‘my_file.hd5’, use

>> theta = hdf5_read(’my_file.hd5’,’theta’);

In MATLAB R2011a and later, there is a high-level built-in function h5read that could
be used for the same purpose.

The HDF5 datasets in the far-field file are the following:

• ‘angora_version’: Integer array of length 3 with the major version, minor version,
and revision numbers of the Angora package used to create the file.

• ‘theta’: A floating-point value for the spherical zenith angle at which the far field is
calculated (in radians).

• ‘phi’: A floating-point value for the spherical azimuth angle at which the far field is
calculated (in radians).

• ‘time_step’: A floating-point value specifying the temporal step in the simulation (in
sec).

http://www.hdfgroup.org/hdf-java-html/hdfview/
http://www.angorafdtd.org/scripts.html
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• ‘initial_time_value’: A floating-point value specifying the time value corresponding
to the beginning of the simulation (in sec). This is usually a negative value, since time
waveforms frequently begin before t=0.

• Floating-point arrays with the waveforms of different components of the vector radiated
electric field. See Figure 6.4 for a graphical illustration of the unit vectors in spherical
coordinates. Note that only the angle and time-dependent part of the radiated electric
field is calculated (see [eq:far field angle dependence time domain], page 40). Because
the (1/r) dependence has been factored out, the units are in Volts.

‘E_theta’: 1-D array with the theta component of the radiated electric field.

• ‘E_phi’: 1-D array with the phi component of the radiated electric field.

• If the theoretical far field due to Hertzian point sources is also calculated (namely,
write_hertzian_dipole_far_field is true):

‘E_theta_th’: 1-D array with the theoretical theta component of the radiated
electric field created by the Hertzian dipoles in the simulation grid.

• ‘E_phi_th’: 1-D array with the theoretical phi component of the radiated electric
field created by the Hertzian dipoles in the simulation grid.

6.8.2 Phasor-Domain Near-Field-to-Far-Field-Transformer

The phasor-domain NFFFT calculates the amplitude of the far field at individual frequen-
cies using Fourier decomposition. This NFFFT supports free space as well as infinite pla-
nar layered media with arbitrary permittivity, permeability and conductivity profiles (see
[Capoglu12], page 90). Infinite planar layers are created using the MaterialSlabs variable
(see Section 6.5.2 [Planar Layers], page 24).

The phasor-domain NFFFT in Angora calculates far-field values over a two-dimensional
array of observation directions and a range of wavelengths; resulting in a three-dimensional
array. The spacing of the wavelengths and the arrangement of observation directions is
highly configurable. The format used for the phasor-domain far-field output is HDF5 (Hi-
erarchical Data Format) (http://www.hdfgroup.org/HDF5/). The HDF5 format was
chosen for its standard interface, and the availability of free software tools for inspecting
and modifying HDF5 output. The HDF5 output created by the phasor-domain NFFFT
is explained in more detail in Section 6.8.2.1 [HDF5 Content of Phasor-Domain NFFFT
Output], page 52.

Angora uses the engineering convention exp(jωt) for time-harmonic quantities. The
time-domain data on the surface of a rectangular prism in the grid, called the NFFFT
surface, is decomposed into its phasor components by a numerical approximation to the
temporal Fourier transform F (ω) = 1

2π

∫
f(t) exp(−jωt)dt . Because of the 1

2π
term, the

phasor quantities F (ω) correspond to the true Fourier components of the time-domain
quantities on the NFFFT surface. These quantities are then inserted into phasor-domain
electromagnetic theorems linking the near field to the far field. The complex phasor out-
put data therefore also corresponds to the Fourier components of the far-field temporal
waveforms.

In the phasor domain, the radiated electric field can be expressed in the form

Ēr(r, θ, φ) = Ē(θ, φ) exp(−jkr)/r .

http://www.hdfgroup.org/HDF5/
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The phasor-domain NFFFT only calculates the angle-dependent part of the above expres-
sion, namely, Ē(θ, φ) . In Figure 6.4, the angles and unit vectors are shown for spherical
coordinates.

Figure 6.4: The angles and unit vectors for spherical coordinates.

[Global variable]string pd_nffft_output_dir (default: "nffft/pd")
This determines the subdirectory in which all the phasor-domain-NFFFT output will
be placed. Unless it has a slash ‘/’ up front; this path is interpreted as being relative
to output_dir (see Section 6.12 [Paths], page 86).

pd_nffft_output_dir = "nffft/pd";

PhasorDomainNFFFT:

{

...

...

};

[Global variable]list PhasorDomainNFFFT
Phasor-domain NFFFTs are defined inside a PhasorDomainNFFFT list, each within its
own group:

PhasorDomainNFFFT:

(

{

num_of_lambdas = 10;

lambda_min = 400e-9;

lambda_max = 700e-9;

lambda_spacing_type = "k-linear";

do_not_include_first_lambda = false;

do_not_include_last_lambda = false;

direction_spec = "theta-phi";

num_of_dirs_1 = 9;

dir1_min=0.0;

dir1_max=90.0;

num_of_dirs_2 = 361;
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dir2_min=0.0;

dir2_max=360.0;

limit_to_s = 1.0;

write_hertzian_dipole_far_field = false;

nffft_back_margin_x_in_cells = 3;

nffft_front_margin_x_in_cells = 3;

nffft_left_margin_y_in_cells = 3;

nffft_right_margin_y_in_cells = 3;

nffft_lower_margin_z_in_cells = 3;

nffft_upper_margin_z_in_cells = 3;

far_field_origin_x = 0.0;

far_field_origin_y = 0.0;

far_field_origin_z = 0.0;

far_field_dir = "my_dir";

far_field_file_name = "FarField_pd";

far_field_file_extension = "hd5";

append_group_index_to_file_name = true;

},

{

...

...

}

);

[Sub-variable of PhasorDomainNFFFT]integer num_of_lambdas
This specifies the number of wavelengths (in vacuum) at which the far field will
be calculated.

[Sub-variable of PhasorDomainNFFFT]floating-point lambda_min (units:
m)

[Sub-variable of PhasorDomainNFFFT]floating-point
lambda_min_in_cells

This value sets the lower limit of the wavelength range (in vacuum) over which
the far field is calculated. The far field may or may not be calculated at the
wavelength lambda_min, depending on the variable do_not_include_first_

lambda. The units are either in meters or grid cells. For the latter, the _in_

cells suffix should be appended to the variable name.

[Sub-variable of PhasorDomainNFFFT]floating-point lambda_max (units:
m)

[Sub-variable of PhasorDomainNFFFT]floating-point
lambda_max_in_cells

This value sets the upper limit of the wavelength range (in vacuum) over
which the far field is calculated. The far field may or may not be calculated
at the wavelength lambda_max, depending on the variable do_not_include_

last_lambda. The units are either in meters or grid cells. For the latter, the
_in_cells suffix should be appended to the variable name.
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[Sub-variable of PhasorDomainNFFFT]string lambda_spacing_type
This string specifies how the wavelengths will be spaced between the two end
points determined by lambda_min, lambda_max, do_not_include_first_

lambda, and do_not_include_last_lambda.

• "lambda-linear": The wavelengths are spaced lineary between the two
end points.

• "k-linear": The wavenumbers k = 2π/λ are spaced linearly between the
two end points. Since the wavenumber is also equal to k = ω/c , where ω
is the radian frequency, this causes the frequencies to be spaced linearly as
well.

• "log": The logarithms of the wavelengths (therefore the logarithms of the
wavenumbers) are spaced linearly between the two end points.

[Sub-variable of PhasorDomainNFFFT]boolean
do_not_include_first_lambda (default: false)

[Sub-variable of PhasorDomainNFFFT]boolean
do_not_include_last_lambda (default: false)

Let’s assume that lambda_spacing_type is lambda-linear. For k-linear and
log, replace lambda_min in the following by 2π/ lambda_min and log(lambda_
min), respectively. The same applies to lambda_max.

• If do_not_include_first_lambda=false and do_not_include_last_

lambda=false: The interval between lambda_min and lambda_max

is divided into (num_of_lambdas-1) equal intervals. A total of
num_of_lambdas wavelengths are placed linearly at the boundaries
between the intervals, including both endpoints lambda_min and
lambda_max.

• If do_not_include_first_lambda=true and do_not_include_last_

lambda=false: The interval between lambda_min and lambda_max is
divided into num_of_lambdas equal intervals. A total of num_of_lambdas
wavelengths are placed linearly at the boundaries between the intervals,
excluding the endpoint lambda_min.

• If do_not_include_first_lambda=false and do_not_include_last_

lambda=true: The interval between lambda_min and lambda_max is
divided into num_of_lambdas equal intervals. A total of num_of_lambdas
wavelengths are placed linearly at the boundaries between the intervals,
excluding the endpoint lambda_max.

• If do_not_include_first_lambda=true and do_not_include_last_

lambda=true: The interval between lambda_min and lambda_max is
divided into num_of_lambdas equal intervals. A total of num_of_lambdas
wavelengths are placed at the midpoints of each interval.

[Sub-variable of PhasorDomainNFFFT]string direction_spec
This string specifies how the observation directions are arranged in a two-
dimensional array.

• "theta-phi": The first dimension is the spherical polar angle θ , defined
as the angle between the observation direction and the z-axis. The second
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dimension is the spherical azimuth angle φ , defined as the angle between
the x-axis and the projection of the observation direction onto the xy-plane.
See Figure 6.4 for a graphical illustration. These angles are spaced linearly
between their respective endpoints.

• "dircosx-dircosy-upper" or "dircosx-dircosy-lower": The first di-
mension is the x-direction-cosine sx = sin θ cosφ while the second dimen-
sion is the y-direction-cosine sy = sin θ sinφ . These direction cosines are
spaced linearly between their respective endpoints. The suffix "-upper"

or "-lower" determines whether the observation direction is in the upper
half space (+z direction) or the lower half space (-z direction).

[Sub-variable of PhasorDomainNFFFT]integer num_of_dirs_1
This is the number of observation directions over the first dimension of the two-
dimensional observation-direction array. If direction_spec is "theta-phi",
this is the number of θ values; otherwise, the number of x-direction-cosines
sx = sin θ cosφ .

[Sub-variable of PhasorDomainNFFFT]floating-point dir1_min

[Sub-variable of PhasorDomainNFFFT]floating-point dir1_max
These are the minimum/maximum values of either the θ angle (in degrees), or
the x-direction-cosine (between -1 and 1).

[Sub-variable of PhasorDomainNFFFT]integer num_of_dirs_2
This is the number of observation directions over the second dimension of the
two-dimensional observation-direction array. If direction_spec is "theta-

phi", this is the number of φ values; otherwise, the number of y-direction-
cosines sy = sin θ sinφ .

[Sub-variable of PhasorDomainNFFFT]floating-point dir2_min

[Sub-variable of PhasorDomainNFFFT]floating-point dir2_max
These are the minimum/maximum values of either the φ angle (in degrees), or
the y-direction-cosine (between -1 and 1).

[Sub-variable of PhasorDomainNFFFT]floating-point limit_to_s
(default: 1)

If direction_spec is "dircosx-dircosy-upper" or "dircosx-dircosy-

lower" (the direction cosines are used to specify the observation directions),
it might happen that some combinations of sx and sy do not correspond to
a real observation direction, since s2x + s2y > 1 . Such direction cosines are
automatically assigned a far-field value of zero. If you would like to limit the
direction cosines further into a narrower observation cone, you can choose the
value of limit_to_s to be smaller than 1.0. Then, the far field corresponding
to the direction cosines satisfying s2x + s2y >(limit to s) are assigned a zero
value. Although this could also be done in post processing, eliminating some
observation directions in this way removes the burden of computing them in
the first place. Specifying a limit_to_s value corresponds to reducing the
numerical aperture in a microscope objective.
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[Sub-variable of PhasorDomainNFFFT]boolean
write_hertzian_dipole_far_field (default: false)

If set to true, the theoretical far field due to the Hertzian point sources (see
Section 6.7 [Point Sources], page 39) in the simulation grid is also written into
the output file. Any planar stratification is accounted for in the calculation of
the theoretical far field, but the scattering from any other structure inside the
grid is ignored. As such, this feature can be (and has been) used to test the
phasor-domain NFFFT.

[Sub-variable of PhasorDomainNFFFT]floating-point
nffft_back_margin_x (units:m)

[Sub-variable of PhasorDomainNFFFT]floating-point
nffft_front_margin_x (units:m)

[Sub-variable of PhasorDomainNFFFT]floating-point
nffft_left_margin_y (units:m)

[Sub-variable of PhasorDomainNFFFT]floating-point
nffft_right_margin_y (units:m)

[Sub-variable of PhasorDomainNFFFT]floating-point
nffft_lower_margin_z (units:m)

[Sub-variable of PhasorDomainNFFFT]floating-point
nffft_upper_margin_z (units:m)

[Sub-variable of PhasorDomainNFFFT]integer
nffft_back_margin_x_in_cells (default: 3)

[Sub-variable of PhasorDomainNFFFT]integer
nffft_front_margin_x_in_cells (default: 3)

[Sub-variable of PhasorDomainNFFFT]integer
nffft_left_margin_y_in_cells (default: 3)

[Sub-variable of PhasorDomainNFFFT]integer
nffft_right_margin_y_in_cells (default: 3)

[Sub-variable of PhasorDomainNFFFT]integer
nffft_lower_margin_z_in_cells (default: 3)

[Sub-variable of PhasorDomainNFFFT]integer
nffft_upper_margin_z_in_cells (default: 3)

The near field is collected over the surface of a rectangular prism in the grid,
called the NFFFT surface. This surface should enclose all the scattering and/or
radiating structures in the grid, as well as the total-field/scattered-field surface
(see Section 6.10 [Incident Beams], page 63). By default, this rectangular box is
placed 3 grid cells away from the PML boundary (see Section 6.2.4 [Perfectly-
Matched Layer (PML)], page 15). You can specify different margins to reduce
the computational burden associated with the NFFFT. This burden is directly
proportional to the surface area of the box. The margins can be specified in
meters or in grid cells. For the latter, the _in_cells suffix should be appended
to the variable name. If given in meters, the margins are rounded to the nearest
multiple of the spatial step size.
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[Sub-variable of PhasorDomainNFFFT]floating-point
far_field_origin_x (units: m, default: 0)

[Sub-variable of PhasorDomainNFFFT]floating-point
far_field_origin_y (units: m, default: 0)

[Sub-variable of PhasorDomainNFFFT]floating-point
far_field_origin_z (units: m, default: 0)

[Sub-variable of PhasorDomainNFFFT]floating-point
far_field_origin_x_in_cells (default: 0)

[Sub-variable of PhasorDomainNFFFT]floating-point
far_field_origin_y_in_cells (default: 0)

[Sub-variable of PhasorDomainNFFFT]floating-point
far_field_origin_z_in_cells (default: 0)

These variables set the coordinates of the point relative to which the far field
will be calculated. The distance r in [eq:far field angle dependence], page 45
is with respect to this point. The coordinates of the far-field origin are with
respect to the grid origin (see Section 6.2.6 [Coordinate Origin], page 16). The
units are either in meters or grid cells. For the latter, the _in_cells suffix
should be appended to the variable name.

[Sub-variable of PhasorDomainNFFFT]string far_field_dir (default: "")
This determines the subdirectory in which this individual far-field file will be
placed. Unless it has a slash ‘/’ up front; this path is interpreted as being rela-
tive to pd_nffft_output_dir (see [pd nffft output dir], page 46). By default,
no subdirectory is created inside pd_nffft_output_dir.

[Sub-variable of PhasorDomainNFFFT]string far_field_file_name
(default: "FarField_pd")

This determines the base string in the full name of the far-field file. Other
information is appended to the name of the file to differentiate individual far-
field files (see the example below).

[Sub-variable of PhasorDomainNFFFT]string far_field_file_extension
(default: "hd5")

This is the extension of the far-field file name. If assigned the value "", no
extension is added to the file. The HDF5 extension "hd5" is applied by default.

Here is an example far-field file name:

FarField_pd_0_1.hd5

The base string in the name of the file ("FarField_pd") is specified by the far_field_
file_name variable. The two integers that follow are the run index (see Section 6.14
[Multiple Simulation Runs], page 87) and the index of the phasor-domain NFFFT in-
side the PhasorDomainNFFFT list. For example, if there are two groups (two NFFFTs)
in the PhasorDomainNFFFT list, the first one will write into

FarField_pd_0_0.hd5

while the second will write into
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FarField_pd_0_1.hd5

If there are two simulation runs (i.e., number_of_runs is equal to 2 – see Section 6.14
[Multiple Simulation Runs], page 87), then the files created in the second run will
have 1 instead of 0 as the first integer in the above file names. Finally, the extension
("hd5") of the line files is determined by the variable far_field_file_extension.

[Sub-variable of PhasorDomainNFFFT]boolean
append_group_index_to_file_name (default: true)

If this is set to false, the second integer in the filename (see above) and the
underscore preceding it are not included in the filename. It is set to true by
default. If this variable is set to false and there are multiple groups (phasor-
domain NFFFTs), there will be a name clash, and the output will be undefined.

6.8.2.1 HDF5 Content of Phasor-Domain NFFFT Output

The HDF5 file created as the output of the phasor-domain NFFFT can be viewed and
modified using freely-available tools. One of these tools is HDFView, provided by the
HDF Group. MATLAB also has built-in functions and tools that handle HDF5 files. For
reference, a MATLAB script named ‘hdf5_read.m’ is distributed as part of the Angora
package, which reads an HDF5 dataset from an HDF5 file into a MATLAB array. This script
is installed in the directory ‘$(prefix)/share/angora/’ (see Chapter 3 [Compilation and
Installation], page 7). If Angora was installed without any $(prefix) configuration option,
the default location is ‘/usr/local/share/angora/’. This script can also be downloaded
directly from the Angora website (link here). For example, if you want to read the dataset
named lambda from the file ‘my_file.hd5’, use

>> lambda = hdf5_read(’my_file.hd5’,’lambda’);

In MATLAB R2011a and later, there is a high-level built-in function h5read that could
be used for the same purpose.

The HDF5 datasets in the far-field file are the following:

• ‘angora_version’: Integer array of length 3 with the major version, minor version,
and revision numbers of the Angora package used to create the file.

• ‘lambda’: 1-D array with the recorded free-space wavelength values (in m).

• If direction_spec is "theta-phi":

• ‘theta’: 1-D array with the theta values.

• ‘phi’: 1-D array with the phi values.

• If direction_spec is "dircosx-dircosy-upper" or "dircosx-dircosy-lower":

• ‘dircos_x’: 1-D array with the x-direction-cosine values.

• ‘dircos_y’: 1-D array with the y-direction-cosine values.

• Floating-point arrays with the real and imaginary parts of different components of
the vector radiated electric field. See Figure 6.4 for a graphical illustration of the
unit vectors in spherical coordinates. Note that only the angle-dependent part of
the radiated electric field is calculated (see [eq:far field angle dependence], page 45).
Because the (1/r) dependence has been factored out, the units are in Volts. The first
dimension is the wavelength, the second is either theta or the x-direction-cosine, and
the third is either phi or the y-direction-cosine.

http://www.hdfgroup.org/hdf-java-html/hdfview/
http://www.angorafdtd.org/scripts.html
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‘E_theta_r’,‘E_theta_i’: 3-D arrays with the real and imaginary parts of the
theta component of the radiated electric field.

• ‘E_phi_r’,‘E_phi_i’: 3-D arrays with the real and imaginary parts of the phi
component of the radiated electric field.

• If the theoretical far field due to Hertzian point sources is also calculated (namely,
write_hertzian_dipole_far_field is true):

‘E_theta_th_r’,‘E_theta_th_i’: 3-D arrays with the theoretical real and imag-
inary parts of the theta component of the radiated electric field created by the
Hertzian dipoles in the simulation grid.

• ‘E_phi_th_r’,‘E_phi_th_i’: 3-D arrays with the theoretical real and imaginary
parts of the phi component of the radiated electric field created by the Hertzian
dipoles in the simulation grid.

6.9 Optical Imaging

Angora can synthesize numerical optical images created by an ideal imaging system. The
image is calculated in the form of a field distribution on a two-dimensional plane in the
image space; which is assumed homogeneous. In photolithography, this image distribution
is commonly called an aerial image.

The optical axis of the imaging system is currently limited to the z axis. The collec-
tion can be either through the +z or -z direction, allowing the simulation of reflection or
transmission-mode imaging without changing the illumination scheme. Angora internally
utilizes a near-field-to-far-field transformer (NFFFT) (see Section 6.8 [Near-Field-to-Far-
Field Transformer], page 40) to calculate the optical image.

In Figure 6.5, a simplified representation is shown for the optical imaging geometry. The
illumination scheme is not shown in the figure, and the collection is assumed to be through
the upper half space. The entire optical system is represented by a single lens, although
the system may comprise multiple lenses, apertures, stops, etc. The only assumptions
regarding the optical system is that it satisfies Abbe’s sine condition, and it is telecentric
(see [Capoglu12b], page 90). Telecentricity implies that the entrance pupil is actually at
infinity, although it is shown at a finite distance for ease of presentation in the figure.
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Figure 6.5: A simplified depiction of the optical imaging geometry.

The format used for the optical imaging output is HDF5 (Hierarchical Data Format)
(http://www.hdfgroup.org/HDF5/). The HDF5 format was chosen for its standard inter-
face, and the availability of free software tools for inspecting and modifying HDF5 output.
The HDF5 content of the optical image file is explained in more detail in Section 6.9.1
[Optical Image File HDF5 Content], page 61.

[Global variable]string imaging_output_dir (default: "imaging/")
This determines the subdirectory in which all the optical-imaging output will be
placed. Unless it has a slash ‘/’ up front; this path is interpreted as being relative to
output_dir (see Section 6.12 [Paths], page 86).

imaging_output_dir = "imaging";

OpticalImages:

{

...

...

};

[Global variable]list OpticalImages
Optical images are defined in an OpticalImages list:

http://www.hdfgroup.org/HDF5/
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OpticalImages:

(

{

output_data = ["E_x_tot","E_y_tot","E_z_tot",

"E_x_sca","E_y_sca","E_z_sca",

"E_x_unsca","E_y_unsca","E_z_unsca",

"intensity_tot",

"intensity_sca",

"intensity_unsca"];

num_of_lambdas = 5;

lambda_min = 400e-9;

lambda_max = 700e-9;

lambda_spacing_type = "k-linear";

do_not_include_first_lambda = false;

do_not_include_last_lambda = false;

ap_half_angle = 36.87;

magnification = 40.0;

image_space_refr_index = 1.0;

image_expansion_factor_x = 1.0;

image_expansion_factor_y = 1.0;

image_oversampling_rate_x = 1.0;

image_oversampling_rate_y = 1.0;

coll_half_space = "upper";

nffft_back_margin_x_in_cells = 3;

nffft_front_margin_x_in_cells = 3;

nffft_left_margin_y_in_cells = 3;

nffft_right_margin_y_in_cells = 3;

nffft_lower_margin_z_in_cells = 3;

nffft_upper_margin_z_in_cells = 3;

image_origin_x = 0.0;

image_origin_y = 0.0;

image_origin_z = 0.0;

image_dir = "";

image_file_name = "Image";

image_file_extension = "hd5";

append_group_index_to_file_name = true;

},

{

...

...

}

);

[Sub-variable of OpticalImages]string-array output_data
This array of strings determines what will be included in the final output file.
Any combination of the following strings can be listed in the array.

• "E_x_sca", "E_y_sca", "E_z_sca": The x, y, and z components of the
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scattered electric field of the image. This is the electric field that is scattered
or generated by the structures inside the simulation grid. The incident
beams (see Section 6.10 [Incident Beams], page 63) and the reflections and
transmissions from the infinite planar layer interfaces are not included in
the scattered field.

• "E_x_unsca", "E_y_unsca", "E_z_unsca": The x, y, and z components
of the unscattered electric field of the image. This is the electric field
that would be created at the image plane in the absence of any scatterer
inside the simulation grid except the infinite planar layers. The portion of
the incident beams (see Section 6.10 [Incident Beams], page 63) and the
reflections and transmissions from the infinite planar layer interfaces that
fall into the collection aperture contribute to the unscattered field.

• "E_x_tot", "E_y_tot", "E_z_tot": The x, y, and z components of the
total electric field of the image, defined as the sum of the scattered and
unscattered fields above.

• "intensity_sca": The scattered light intensity at the image plane
(in W/m^2), defined as Isca = nimg|Esca|2/η0 where nimg is the
image-side refractive index, and η0 is the free-space wave impedance
(=376.7303...Ohms). Esca is the scattered electric field vector.

• "intensity_unsca": The unscattered light intensity at the image plane
(in W/m^2), defined as Iunsca = nimg|Eunsca|2/η0 where nimg is the
image-side refractive index, and η0 is the free-space wave impedance
(=376.7303...Ohms). Eunsca is the unscattered electric field vector.

• "intensity_tot": The total light intensity at the image plane
(in W/m^2), defined as Itot = nimg|Etot|2/η0 where nimg is the
image-side refractive index, and η0 is the free-space wave impedance
(=376.7303...Ohms). Etot is the total electric field vector.

For example, if the output_data array is

output_data = ["E_x_sca","intensity_tot"];

then only the x-component of the scattered electric field of the image and the
total light intensity of the image are recorded in the output.

[Sub-variable of OpticalImages]integer num_of_lambdas
This specifies the number of wavelengths (in vacuum) at which the optical image
will be calculated.

[Sub-variable of OpticalImages]floating-point lambda_min (units: m)

[Sub-variable of OpticalImages]floating-point lambda_min_in_cells
This value sets the lower limit of the wavelength range (in vacuum) over which
the optical image is calculated. The optical image may or may not be calculated
at the wavelength lambda_min, depending on the variable do_not_include_

first_lambda. The units are either in meters or grid cells. For the latter, the
_in_cells suffix should be appended to the variable name.
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[Sub-variable of OpticalImages]floating-point lambda_max (units: m)

[Sub-variable of OpticalImages]floating-point lambda_max_in_cells
This value sets the upper limit of the wavelength range (in vacuum) over which
the optical image is calculated. The optical image may or may not be calculated
at the wavelength lambda_max, depending on the variable do_not_include_

last_lambda. The units are either in meters or grid cells. For the latter, the
_in_cells suffix should be appended to the variable name.

[Sub-variable of OpticalImages]string lambda_spacing_type
This string specifies how the wavelengths will be spaced between the two end
points determined by lambda_min, lambda_max, do_not_include_first_

lambda, and do_not_include_last_lambda.

• "lambda-linear": The wavelengths are spaced lineary between the two
end points.

• "k-linear": The wavenumbers k = 2π/λ are spaced linearly between the
two end points. Since the wavenumber is also equal to k = ω/c , where ω
is the radian frequency, this causes the frequencies to be spaced linearly as
well.

• "log": The logarithms of the wavelengths (therefore the logarithms of the
wavenumbers) are spaced linearly between the two end points.

[Sub-variable of OpticalImages]boolean do_not_include_first_lambda
(default: false)

[Sub-variable of OpticalImages]boolean do_not_include_last_lambda
(default: false)

Let’s assume that lambda_spacing_type is lambda-linear. For k-linear and
log, replace lambda_min in the following by 2π/ lambda_min and log(lambda_
min), respectively. The same applies to lambda_max.

• If do_not_include_first_lambda=false and do_not_include_last_

lambda=false: The interval between lambda_min and lambda_max

is divided into (num_of_lambdas-1) equal intervals. A total of
num_of_lambdas wavelengths are placed linearly at the boundaries
between the intervals, including both endpoints lambda_min and
lambda_max.

• If do_not_include_first_lambda=true and do_not_include_last_

lambda=false: The interval between lambda_min and lambda_max is
divided into num_of_lambdas equal intervals. A total of num_of_lambdas
wavelengths are placed linearly at the boundaries between the intervals,
excluding the endpoint lambda_min.

• If do_not_include_first_lambda=false and do_not_include_last_

lambda=true: The interval between lambda_min and lambda_max is
divided into num_of_lambdas equal intervals. A total of num_of_lambdas
wavelengths are placed linearly at the boundaries between the intervals,
excluding the endpoint lambda_max.
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• If do_not_include_first_lambda=true and do_not_include_last_

lambda=true: The interval between lambda_min and lambda_max is
divided into num_of_lambdas equal intervals. A total of num_of_lambdas
wavelengths are placed at the midpoints of each interval.

[Sub-variable of OpticalImages]floating-point ap_half_angle (units:
degrees)

This is the half-angle of the collection cone over which the far field is collected.
This angle is represented by θobj in Figure 6.5

[Sub-variable of OpticalImages]floating-point magnification (default:
1)

This is the absolute value of the lateral magnification of the optical imaging
system. If greater than 1, the imaging system shows a magnified image of the
object. This is the case in microscopy, where the magnification ranges from 10
to 100. If less than 1, the image is a de-magnified version of the object, This is
the case in photolithography, where a de-magnified image of a mask is projected
on a photoresist. Typical magnifications in photolithography are 0.1 to 0.25.

[Sub-variable of OpticalImages]floating-point image_space_refr_index
(default: 1)

This variable specifies the refractive index of the image space, assumed to be
homogeneous.

[Sub-variable of OpticalImages]floating-point
image_expansion_factor_x (default: 1)

[Sub-variable of OpticalImages]floating-point
image_expansion_factor_y (default: 1)

By default, the optical image will only span the lateral (x-y) dimensions of the
FDTD grid. The x and y dimensions of the image can be increased or decreased
using these two factors. Setting these factors greater than 1 will reduce the
aliasing effects in the numerical computation of the image, but linearly increase
the computational burden associated with the far-field computation. This is
because the far-field has to be collected at a denser set of observation directions
for a larger image. The technical details of this are the subject of sampling
theory, and are explained in [Capoglu12b], page 90.

[Sub-variable of OpticalImages]floating-point
image_oversampling_rate_x (default: 1)

[Sub-variable of OpticalImages]floating-point
image_oversampling_rate_y (default: 1)

Angora tries to automatically determine the minimum number of far-field col-
lection directions to accurately synthesize the optical image. By default, the
number of pixels in the final image is the same as the number of far-field col-
lection directions. As a result, the image is sampled very economically; caus-
ing a pixelated appearance. A finer image can be synthesized by scaling the
sampling rate in the x and y directions by modifying image_oversampling_

rate_x and image_oversampling_rate_y, respectively. For example, setting
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image_oversampling_rate_x=10 results in 10 times the default number of pix-
els in the x direction. Choosing high values for these two factors do not really
cause much degradation in performance, since only the post-processing (post-
simulation) computational burden is affected. The post-processing burden is
usually a small fraction of the burden associated with the whole simulation.

In sampling theory, the minimum number of pixels needed to represent the im-
age is determined by the Nyquist sampling rate for the image (see [Capoglu12b],
page 90). There is a well-defined Nyquist sampling rate associated with every
optical image, since they are constrained in spatial frequency content by the
wavelength of illumination. If desired, the default image (the one obtained with
image_oversampling_rate_x=image_oversampling_rate_y=1) can be made
arbitrarily fine through bandlimited interpolation in post-processing.

[Sub-variable of OpticalImages]string coll_half_space
Although the collection apparatus seems to be situated in the upper (+z) half
space in Figure 6.5, it can also be situated in the lower (-z) half space. This is
specified by assigning the string "upper" or "lower" to the coll_half_space
variable, respectively. In Figure 6.6, these two imaging geometries are shown
separately. Note that the image is inverted, but the image-space coordinates
(x’ and y’) are also inverted with respect to the object space.

Figure 6.6: Collection of the scattered light in the upper half space (left figure),
or the lower half space (right figure) for the calculation of the optical image.

[Sub-variable of OpticalImages]floating-point nffft_back_margin_x
(units:m)

[Sub-variable of OpticalImages]floating-point nffft_front_margin_x
(units:m)

[Sub-variable of OpticalImages]floating-point nffft_left_margin_y
(units:m)

[Sub-variable of OpticalImages]floating-point nffft_right_margin_y
(units:m)
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[Sub-variable of OpticalImages]floating-point nffft_lower_margin_z
(units:m)

[Sub-variable of OpticalImages]floating-point nffft_upper_margin_z
(units:m)

[Sub-variable of OpticalImages]integer nffft_back_margin_x_in_cells
(default: 3)

[Sub-variable of OpticalImages]integer nffft_front_margin_x_in_cells
(default: 3)

[Sub-variable of OpticalImages]integer nffft_left_margin_y_in_cells
(default: 3)

[Sub-variable of OpticalImages]integer nffft_right_margin_y_in_cells
(default: 3)

[Sub-variable of OpticalImages]integer nffft_lower_margin_z_in_cells
(default: 3)

[Sub-variable of OpticalImages]integer nffft_upper_margin_z_in_cells
(default: 3)

In the collection stage of optical imaging (see Figure 6.5), the far field scat-
tered from the sample is calculated using a near-field-to-far-field transformer
(NFFFT). These variables determine the surface over which the near field is col-
lected for the calculation of the far field. For more information, see Section 6.8
[Near-Field-to-Far-Field Transformer], page 40.

[Sub-variable of OpticalImages]floating-point image_origin_x (units: m,
default: 0)

[Sub-variable of OpticalImages]floating-point image_origin_y (units: m,
default: 0)

[Sub-variable of OpticalImages]floating-point image_origin_z (units: m,
default: 0)

[Sub-variable of OpticalImages]floating-point
image_origin_x_in_cells (default: 0)

[Sub-variable of OpticalImages]floating-point
image_origin_y_in_cells (default: 0)

[Sub-variable of OpticalImages]floating-point
image_origin_z_in_cells (default: 0)

These variables set the coordinates of the optical conjugate of the center of
the image plane. Changing these values amounts to focusing at different posi-
tions and depths in the sample using the focusing knob on a microscope. The
coordinates are with respect to the grid origin (see Section 6.2.6 [Coordinate
Origin], page 16). The units are either in meters or grid cells. For the latter,
the _in_cells suffix should be appended to the variable name.
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[Sub-variable of OpticalImages]string image_dir (default: "")
This determines the subdirectory in which this individual image file will be
placed. Unless it has a slash ‘/’ up front; this path is interpreted as being rel-
ative to imaging_output_dir (see [imaging output dir], page 54). By default,
no subdirectory is created inside imaging_output_dir.

[Sub-variable of OpticalImages]string image_file_name (default:
"Image")

This determines the base string in the full name of the image file. Other in-
formation is appended to the name of the file to differentiate individual image
files (see the example below).

[Sub-variable of OpticalImages]string image_file_extension (default:
"hd5")

This is the extension of the image file name. If assigned the value "", no
extension is added to the file.

Here is an example image file name:

Image_0_1.hd5

The base string in the name of the file ("Image") is specified by the image_file_name
variable. The two integers that follow are the run index (see Section 6.14 [Multiple
Simulation Runs], page 87) and the index of the image inside the OpticalImages list.
For example, if there are two groups (two images) in the OpticalImages list, the first
one will write into

Image_0_0.hd5

while the second will write into

Image_0_1.hd5

If there are two simulation runs (i.e., number_of_runs is equal to 2 – see Section 6.14
[Multiple Simulation Runs], page 87), then the files created in the second run will
have 1 instead of 0 as the first integer in the above file names. Finally, the extension
("hd5") of the movie files is determined by the variable image_file_extension.

[Sub-variable of OpticalImages]boolean
append_group_index_to_file_name (default: true)

If this is set to false, the second integer in the filename (see above) and the
underscore preceding it are not included in the filename. It is set to true by
default. If this variable is set to false and there are multiple groups (optical
images), there will be a name clash, and the output will be undefined.

6.9.1 Optical Image File HDF5 Content

The HDF5 file created as the output of optical imaging can be viewed and modified us-
ing freely-available tools. One of these tools is HDFView, provided by the HDF Group.
MATLAB also has built-in functions and tools that handle HDF5 files. For reference, a
MATLAB script named ‘hdf5_read.m’ is distributed as part of the Angora package, which
reads an HDF5 dataset from an HDF5 file into a MATLAB array. This script is installed in
the directory ‘$(prefix)/share/angora/’ (see Chapter 3 [Compilation and Installation],
page 7). If Angora was installed without any $(prefix) configuration option, the default

http://www.hdfgroup.org/hdf-java-html/hdfview/
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location is ‘/usr/local/share/angora/’. This script can also be downloaded directly from
the Angora website (link here). For example, if you want to read the dataset named lambda

from the file ‘my_file.hd5’, use

>> lambda = hdf5_read(’my_file.hd5’,’lambda’);

In MATLAB R2011a and later, there is a high-level built-in function h5read that could
be used for the same purpose.

The HDF5 datasets in the optical image file are the following:

• ‘angora_version’: Integer array of length 3 with the major version, minor version,
and revision numbers of the Angora package used to create the file.

• ‘wv_range’: 1-D array with the recorded free-space wavelength values (in m).

• ‘k_range’: 1-D array with the recorded free-space wavenumber values (in 1/m).

• ‘x_range’,‘y_range’: 1-D arrays with the x and y coordinates of the image (in m).

• ‘n_obj’,‘n_img’: Refractive indices of the object and image spaces, respectively.

• ‘magnification’: Absolute value of the lateral magnification of the imaging system.

• ‘ap_half_angle’: The half-angle of the collection cone over which the scattered light
is collected (in degrees).

• ‘E_x_sca_r’,‘E_x_sca_i’: 3-D arrays with the real and imaginary parts of the x com-
ponent of the scattered electric field in the image. (if "E_x_sca" is included in the
array output_data)

• ‘E_x_unsca_r’,‘E_x_unsca_i’: 3-D arrays with the real and imaginary parts of the x
component of the unscattered electric field in the image. (if "E_x_unsca" is included
in the array output_data)

• ‘E_x_tot_r’,‘E_x_tot_i’: 3-D arrays with the real and imaginary parts of the x com-
ponent of the total electric field in the image. (if "E_x_tot" is included in the array
output_data)

• ‘E_y_sca_r’,‘E_y_sca_i’: 3-D arrays with the real and imaginary parts of the y com-
ponent of the scattered electric field in the image. (if "E_y_sca" is included in the
array output_data)

• ‘E_y_unsca_r’,‘E_y_unsca_i’: 3-D arrays with the real and imaginary parts of the y
component of the unscattered electric field in the image. (if "E_y_unsca" is included
in the array output_data)

• ‘E_y_tot_r’,‘E_y_tot_i’: 3-D arrays with the real and imaginary parts of the y com-
ponent of the total electric field in the image. (if "E_y_tot" is included in the array
output_data)

• ‘E_z_sca_r’,‘E_z_sca_i’: 3-D arrays with the real and imaginary parts of the z com-
ponent of the scattered electric field in the image. (if "E_z_sca" is included in the
array output_data)

• ‘E_z_unsca_r’,‘E_z_unsca_i’: 3-D arrays with the real and imaginary parts of the z
component of the unscattered electric field in the image. (if "E_z_unsca" is included
in the array output_data)

• ‘E_z_tot_r’,‘E_z_tot_i’: 3-D arrays with the real and imaginary parts of the z com-
ponent of the total electric field in the image. (if "E_z_tot" is included in the array
output_data)

http://www.angorafdtd.org/scripts.html
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• ‘intensity_sca’: 3-D array with the intensity of the scattered light at the image
plane (if "intensity_sca" is included in the array output_data). See above for the
definition of ‘intensity_sca’.

• ‘intensity_unsca’: 3-D array with the intensity of the unscattered light at the image
plane (if "intensity_unsca" is included in the array output_data). See above for the
definition of ‘intensity_unsca’.

• ‘intensity_tot’: 3-D array with the intensity of the total light at the image plane (if
"intensity_tot" is included in the array output_data) See above for the definition
of ‘intensity_tot’.

•

6.10 Incident Beams

Different types of incident beams can be sourced into the simulation grid using the TFSF

group.

[Global variable]group TFSF
The TFSF group contains definitions for various types of incident electromagnetic
beams required for scattering problems. Angora uses the total-field/scattered-field
(TF/SF) technique to source incident beams into the simulation grid (see
[TafloveHagness], page 90). In this technique, a rectangular surface surrounding
the scatterer is designated the total-field/scattered-field boundary (or the TF/SF
box in short); and the electromagnetic field on this surface is supplemented by
certain terms proportional to the incident electromagnetic field. These additional
terms create the incident field inside the surface (suggesting the term injection),
while maintaining a very small electromagnetic field outside the surface. The region
outside the TF/SF box only harbors the scattered field created by the scatterers
inside the TF/SF box. The field inside the box is the total field, which is a sum of
the incident field and the scattered field. Since the boundary divides the grid into
total-field and scattered-field regions, the term "TF/SF boundary" is justified.

TF/SF incident beam injection is supported for infinite planar layered media. In-
finite planar layers are created using the MaterialSlabs variable (see Section 6.5.2
[Planar Layers], page 24). Currently, only layers with different permittivities and
electrical conductivities are supported. Permeability variations across layers will also
be supported in the future. Angora also supports evanescent plane waves resulting
from plane waves passing from a high-permittivity layer to a low-permittivity one at
a low grazing angle. Angora supports evanescent waves only for narrowband plane
waves, which have appreciable frequency components only in a small band around
a center frequency. A modulated Gaussian waveform with a large f0τ can be used
as a narrowband waveform in cases where evanescent waves might be present (see
Section 6.6.3 [Modulated-Gaussian Waveforms], page 37).

Different types of incident beams are defined in their respective lists inside the TFSF

group. These are explained in the following subsections.

TFSF:

{

PlaneWaves:
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(

{

...

...

}

);

FocusedLaserBeams:

(

{

...

...

}

);

};

6.10.1 Plane Waves

A plane wave is one of the simplest solutions of Maxwell’s equations; with the electric field

Ē(r̄, t) = ^eE0 f(t− r̄ · ^ki/vp)

where ^ki is the unit vector in the direction of propagation, ^e is the electric-field unit
vector, E0 is the electric field amplitude, and r̄ is the distance vector. The velocity of
propagation vp is determined by the material properties in the direction from which the
plane wave is incident. The time waveform f(t) is arbitrary. Inserting the above expression
into Maxwell’s equations, it is found that the electric-field unit vector ^e is perpendicular
to the direction of propagation, as well as the magnetic-field unit vector.

In a discrete FDTD grid, a plane wave propagates at a slightly lower velocity than in
continuum. Furthermore, there is an intrinsic grid velocity anisotropy that results from
the inherent rotational asymmetry of the rectangular FDTD grid. These are partially
alleviated in Angora by the use of the matched numerical dispersion (MND) technique (see
[TafloveHagness], page 90).

[Sub-variable of TFSF]list PlaneWaves
Plane waves are defined inside a PlaneWaves list inside the TFSF group:

TFSF:

{

PlaneWaves:

(

{

theta = 40.0;

phi = 90.0;

psi = 90.0;

waveform_tag = "waveform1";

pw_extra_amplitude = 1.0;

tfsf_back_margin_x_in_cells = 6;

tfsf_front_margin_x_in_cells = 6;

tfsf_left_margin_y_in_cells = 6;
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tfsf_right_margin_y_in_cells = 6;

tfsf_lower_margin_z_in_cells = 6;

tfsf_upper_margin_z_in_cells = 6;

pw_origin_x = 0.0;

pw_origin_y = 0.0;

pw_origin_z = 0.0;

display_warnings = true;

min_cells_per_lambda = 15.0;

},

{

...

...

}

);

};

[Sub-variable of PlaneWaves]floating-point theta (units: degrees)

[Sub-variable of PlaneWaves]floating-point phi (units: degrees)
The incidence angles of the plane waves are defined in terms of the traditional
spherical-coordinate variables (θ, φ). The first of these angles is the zenith
angle, while the second is the azimuth angle. In Figure 6.7, the definitions of
these angles are shown schematically. The theta variable specifies the zenith
angle in degrees. Although this angle is traditionally defined between 0 and
180deg, theta can be assigned any negative or positive value. The phi variable
specifies the azimuth angle in degrees. Although this angle is traditionally
defined between 0 and 360deg, phi can be assigned any negative or positive
value.

Note that the incidence angles (θ, φ) specify the direction from which the plane
wave is incident ; not the direction in which it propagates.

[Sub-variable of PlaneWaves]floating-point psi (units: degrees)
This variable is used to specify the polarization of the electric field of the in-
cident plane wave. Maxwell’s equations dictate that the electric field is per-
pendicular to the incidence vector ^ki. In order to define the orientation of the
electric vector unambiguously, a local coordinate system (ξ, η) is defined, such
that ^ξ = ^ki×^z and ^η = ^ξ×^ki The unit vectors (^ξ, ^η) are perpendicular
to each other, and lie in the plane perpendicular to the incidence vector ^ki.
The polarization angle ψ of the electric-field unit vector ^e is defined as the
left-handed (clockwise) rotation angle around the axis defined by the incidence
vector ^ki. The variable psi sets this angle in degrees.
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Figure 6.7: Graphical description of the incidence and polarization angles associated
with a plane wave.

[Sub-variable of PlaneWaves]string waveform_tag
This string variable specifies the electric-field waveform f(t) in [eq:pw E field],
page 64. The waveform is interpreted in (Volts/m) units. This should match a
previously-defined tag in a Waveforms definition (see Section 6.6 [Waveforms],
page 34).

[Sub-variable of PlaneWaves]floating-point pw_extra_amplitude (units:
V/m, default: 1.0)

This variable sets the electric field amplitude E0 in [eq:pw E field], page 64.

[Sub-variable of PlaneWaves]floating-point tfsf_back_margin_x (units:
m)

[Sub-variable of PlaneWaves]floating-point tfsf_front_margin_x
(units: m)

[Sub-variable of PlaneWaves]floating-point tfsf_left_margin_y (units:
m)

[Sub-variable of PlaneWaves]floating-point tfsf_right_margin_y
(units: m)

[Sub-variable of PlaneWaves]floating-point tfsf_lower_margin_z
(units: m)

[Sub-variable of PlaneWaves]floating-point tfsf_upper_margin_z
(units: m)



Chapter 6: Configuration Variables 67

[Sub-variable of PlaneWaves]integer tfsf_back_margin_x_in_cells
(default: 6)

[Sub-variable of PlaneWaves]integer tfsf_front_margin_x_in_cells
(default: 6)

[Sub-variable of PlaneWaves]integer tfsf_left_margin_y_in_cells
(default: 6)

[Sub-variable of PlaneWaves]integer tfsf_right_margin_y_in_cells
(default: 6)

[Sub-variable of PlaneWaves]integer tfsf_lower_margin_z_in_cells
(default: 6)

[Sub-variable of PlaneWaves]integer tfsf_upper_margin_z_in_cells
(default: 6)

By default, the total-field/scattered-field (TF/SF) surface is placed 6 grid cells
away from the PML boundary (see Section 6.2.4 [Perfectly-Matched Layer
(PML)], page 15). You can specify different margins to reduce the compu-
tational burden associated with the TF/SF operation. This burden is directly
proportional to the area of the TF/SF surface. The margins can be specified in
meters or in grid cells. For the latter, the _in_cells suffix should be appended
to the variable name. If given in meters, the margins are rounded to the nearest
multiple of the spatial step size.

[Sub-variable of PlaneWaves]floating-point pw_origin_x (units: m)

[Sub-variable of PlaneWaves]floating-point pw_origin_y (units: m)

[Sub-variable of PlaneWaves]floating-point pw_origin_z (units: m)

[Sub-variable of PlaneWaves]floating-point pw_origin_x_in_cells
(default: 0)

[Sub-variable of PlaneWaves]floating-point pw_origin_y_in_cells
(default: 0)

[Sub-variable of PlaneWaves]floating-point pw_origin_z_in_cells
(default: 0)

These variables set the coordinates of the point relative to which the distance
r̄ is defined in [eq:pw E field], page 64. The coordinates are with respect to
the grid origin (see Section 6.2.6 [Coordinate Origin], page 16). The units are
either in meters or grid cells. For the latter, the _in_cells suffix should be
appended to the variable name.

[Sub-variable of PlaneWaves]boolean display_warnings (default: true)

[Sub-variable of PlaneWaves]floating-point min_cells_per_lambda
(default: 15)

The boolean variable display_warnings enables or disables the printing of
warning messages. Currently, a warning is displayed only when there are not
enough grid cells per "minimum" wavelength in the excitation waveform. This
minimum wavelength is defined to be the one at which the spectrum of the
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waveform falls to -40dB below its maximum. The number of required grid
cells per the minimum wavelength is determined by the min_cells_per_lambda
variable.

6.10.2 Focused Laser Beams

Angora can synthesize focused laser beams created by an aplanatic optical system (i.e.,
free of spherical aberration and coma) illuminated by a normally-incident paraxial Hermite-
Gaussian laser mode. The electromagnetic formulation of the focused beam is based on
the classic work of Richards and Wolf (see [Richards59], page 90). This formulation is
interpreted as a sum of plane waves, and approximated by a finite sum in the FDTD
implementation (see [Capoglu08], page 90). It is assumed that the Hermite-Gaussian laser
mode filling the entrance pupil of the optical system has a beam width much larger than
the wavelength, and is therefore in the paraxial regime. In this regime, the wavefronts are
almost planar, perpendicular to the optical axis, and the electric field of the beam has a
negligible longitudinal component.

The incidence geometry for the laser mode illuminating the entrance pupil of the system
is shown on the upper right in Figure 6.8. A local coordinate system (ξ, η) is defined on
the plane of the entrance pupil, such that ^ξ = ^ki× ^z and ^η = ^ξ× ^ki The unit vectors
(^ξ, ^η) are perpendicular to each other, and lie in the plane perpendicular to the incidence
vector ^ki. The symmetry axes (x′, y′) of the Hermite-Gaussian beam are rotated at an
angle of α with respect to the ξ axis, in a clock-wise (left-handed) sense with respect to ^ki.

On the plane of the entrance pupil, which is assumed to coincide with the waist of the
Hermite-Gaussian beam, the electric field is given by

Ē(r̄, t) = ^eE0 f(t)Hm(
√
2
x′

w0

)Hn(
√
2
y′

w0

) exp(−(x′)2 + (y′)2

w2
0

)

where w0 is the beam half width (or beam waist radius), ^e is the electric-field unit vector,
E0 is the electric field amplitude, and Hm(·) are the (physicists’) Hermite polynomials of
order m. The first few Hermite polynomials are

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2

The time waveform f(t) is arbitrary. Since we assume that the width of the beam at the
entrance pupil is much larger than the wavelengths contained in the waveform f(t), it is
reasonable to employ the paraxial approximation, in which the rays propagate parallel to
the optical axis and the electric-field unit vector ^e is perpendicular to the direction of
propagation ^ki.

The focusing optical system between the entrance pupil and the exit pupil is assumed
aplanatic. This means that, in addition to focusing on-axis points stigmatically (without
spherical aberration), the system also correctly focuses off-axis points up to the first order
in off-axis distance. The latter condition corresponds to the absence of circular coma. The
sine condition, first derived by Ernst Abbe in 1881, is an expression of this in mathematical
terms. The sine condition reads

h = f sin(θill)

where h is the radius of the entrance pupil, and f is the back focal length of the focusing
system. The sine condition is also shown geometrically in Figure 6.8.
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Figure 6.8: Geometry of the focused laser beam.

[Sub-variable of TFSF]list FocusedLaserBeams
Focused laser beams are defined inside a FocusedLaserBeams list inside the TFSF

group:

TFSF:

{

FocusedLaserBeams:

(

{

theta = 40.0;

phi = 90.0;

psi = 90.0;

alpha = 0;

x_order = 1;

y_order = 1;

waveform_tag = "waveform1";

flb_extra_amplitude = 1.0;

ap_half_angle = 23.5782;

back_focal_length = 0.1;
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filling_factor = 1;

object_space_refr_index = 1.0;

tfsf_back_margin_x_in_cells = 6;

tfsf_front_margin_x_in_cells = 6;

tfsf_left_margin_y_in_cells = 6;

tfsf_right_margin_y_in_cells = 6;

tfsf_lower_margin_z_in_cells = 6;

tfsf_upper_margin_z_in_cells = 6;

flb_origin_x = 0.0;

flb_origin_y = 0.0;

flb_origin_z = 0.0;

display_warnings = true;

min_cells_per_lambda = 15.0;

},

{

...

...

}

);

};

[Sub-variable of FocusedLaserBeams]floating-point theta (units: degrees)

[Sub-variable of FocusedLaserBeams]floating-point phi (units: degrees)
The incidence angles for the focused laser beam are defined in reference to the
paraxial beam that hits the entrance pupil (see Figure 6.8). The incidence an-
gles are defined in terms of the traditional spherical-coordinate variables (θ, φ).
The first of these angles is the zenith angle, while the second is the azimuth
angle. The theta variable specifies the zenith angle in degrees. Although this
angle is traditionally defined between 0 and 180deg, theta can be assigned any
negative or positive value. The phi variable specifies the azimuth angle in de-
grees. Although this angle is traditionally defined between 0 and 360deg, phi
can be assigned any negative or positive value.

Note that the incidence angles (θ, φ) specify the direction from which the parax-
ial beam is incident ; not the direction in which it propagates.

[Sub-variable of FocusedLaserBeams]floating-point psi (units: degrees)
This variable is used to specify the polarization of the transverse electric field of
the paraxial beam on the entrance pupil. The electric field is perpendicular to
the incidence vector ^ki. The polarization angle ψ is defined as the left-handed
(clockwise) rotation angle with respect to the incidence vector ^ki between the
symmetry axis x′ and the electric-field unit vector ^e (see Figure 6.8). The
variable psi sets this angle in degrees.

[Sub-variable of FocusedLaserBeams]floating-point alpha (units: degrees)
(default: 0)

This angle specifies the rotation of the symmetry axes (x′, y′) of the Hermite-
Gaussian beam with respect to the local coordinate axes (ξ, η). The rotation is
clock-wise (left-handed) with respect to the incidence vector ^ki (see Figure 6.8).
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[Sub-variable of FocusedLaserBeams]integer x_order

[Sub-variable of FocusedLaserBeams]integer y_order
These positive integers specify the orders of the Hermite polynomi-
als Hm(x), Hn(y) in the definition of the Hermite-Gaussian beam in
[eq:fb incident E field], page 68. x_order and y_order correspond to m and
n, respectively.

[Sub-variable of FocusedLaserBeams]string waveform_tag
This string variable specifies the electric-field waveform f(t) in
[eq:fb incident E field], page 68, except a time advance t0 equal to the time
of propagation from the entrance pupil to the focal point F. In other words,
the actual waveform f(t) on the entrance pupil is advanced in time by t0
with respect to the waveform represented by waveform_tag. This is needed
because we simulate the fields around the focus F; not the entrance pupil.
The waveform is interpreted in (Volts/m) units. The string waveform_tag

should match a previously-defined string tag in a Waveforms definition (see
Section 6.6 [Waveforms], page 34).

[Sub-variable of FocusedLaserBeams]floating-point
flb_extra_amplitude (units: V/m, default: 1.0)

This variable sets the electric field amplitude E0 in [eq:fb incident E field],
page 68.

[Sub-variable of FocusedLaserBeams]floating-point ap_half_angle
(units: degrees)

This variable sets the half-angle θill of the illumination cone in degrees (see
Figure 6.8).

If a planar layered medium is present in the grid (see Section 6.5.2 [Planar
Layers], page 24), the incidence cone bounded by the angle θill should lie entirely
within the upper or lower half space. In other words, the incidence cone cannot
cut across the grazing direction (θ = π/2) . Angora will throw an error if this
is found to be the case.

[Sub-variable of FocusedLaserBeams]floating-point back_focal_length
(units: m)

[Sub-variable of FocusedLaserBeams]floating-point
back_focal_length_in_cells

This variable specifies the back focal length f of the optical system. The units
are either in meters or grid cells. For the latter, the _in_cells suffix should
be appended to the variable name.

[Sub-variable of FocusedLaserBeams]floating-point filling_factor
This dimensionless parameter represents the ratio between the half-width of the
incident paraxial beam and the radius of the entrance pupil. The larger this
ratio, the more overfilled the pupil, and vice versa. This parameter is defined
as

f0 =
w0

f sin(θill)
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[Sub-variable of FocusedLaserBeams]floating-point
object_space_refr_index (default: 1.0)

This variable specifies the refractive index of the object space of the optical
system; i.e., the space from which the paraxial beam is incident. Note that the
FDTD simulation grid is in the image space of the optical system; therefore
the refractive index of the image space is determined by the material filling the
FDTD grid. If you want to simulate an oil immersion scenario, for example,
you should fill the FDTD simulation space with the material representing the
immersion oil. The object-side refractive index object_space_refr_index is
seldom different than 1.0, which is the default value.

[Sub-variable of FocusedLaserBeams]floating-point tfsf_back_margin_x
(units: m)

[Sub-variable of FocusedLaserBeams]floating-point
tfsf_front_margin_x (units: m)

[Sub-variable of FocusedLaserBeams]floating-point tfsf_left_margin_y
(units: m)

[Sub-variable of FocusedLaserBeams]floating-point
tfsf_right_margin_y (units: m)

[Sub-variable of FocusedLaserBeams]floating-point
tfsf_lower_margin_z (units: m)

[Sub-variable of FocusedLaserBeams]floating-point
tfsf_upper_margin_z (units: m)

[Sub-variable of FocusedLaserBeams]integer
tfsf_back_margin_x_in_cells (default: 6)

[Sub-variable of FocusedLaserBeams]integer
tfsf_front_margin_x_in_cells (default: 6)

[Sub-variable of FocusedLaserBeams]integer
tfsf_left_margin_y_in_cells (default: 6)

[Sub-variable of FocusedLaserBeams]integer
tfsf_right_margin_y_in_cells (default: 6)

[Sub-variable of FocusedLaserBeams]integer
tfsf_lower_margin_z_in_cells (default: 6)

[Sub-variable of FocusedLaserBeams]integer
tfsf_upper_margin_z_in_cells (default: 6)

By default, the total-field/scattered-field (TF/SF) surface is placed 6 grid cells
away from the PML boundary (see Section 6.2.4 [Perfectly-Matched Layer
(PML)], page 15). You can specify different margins to reduce the compu-
tational burden associated with the TF/SF operation. This burden is directly
proportional to the area of the TF/SF surface. Because the focused beam is
actually a collection of many (often hundreds) of plane waves, the reduction of
the surface area of the TF/SF box greatly helps the simulation performance.
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The margins can be specified in meters or in grid cells. For the latter, the
_in_cells suffix should be appended to the variable name. If given in meters,
the margins are rounded to the nearest multiple of the spatial step size.

[Sub-variable of FocusedLaserBeams]floating-point flb_origin_x (units:
m)

[Sub-variable of FocusedLaserBeams]floating-point flb_origin_y (units:
m)

[Sub-variable of FocusedLaserBeams]floating-point flb_origin_z (units:
m)

[Sub-variable of FocusedLaserBeams]floating-point
flb_origin_x_in_cells (default: 0)

[Sub-variable of FocusedLaserBeams]floating-point
flb_origin_y_in_cells (default: 0)

[Sub-variable of FocusedLaserBeams]floating-point
flb_origin_z_in_cells (default: 0)

These variables set the coordinates of the back focal point F of the focusing
lens. (see Figure 6.8). The coordinates are with respect to the grid origin (see
Section 6.2.6 [Coordinate Origin], page 16). The units are either in meters
or grid cells. For the latter, the _in_cells suffix should be appended to the
variable name.

[Sub-variable of FocusedLaserBeams]boolean display_warnings (default:
true)

[Sub-variable of FocusedLaserBeams]floating-point
min_cells_per_lambda (default: 15)

The boolean variable display_warnings enables or disables the printing of
warning messages. Currently, a warning is displayed only when there are not
enough grid cells per "minimum" wavelength in the excitation waveform. This
minimum wavelength is defined to be the one at which the spectrum of the
waveform falls to -40dB below its maximum. The number of required grid
cells per the minimum wavelength is determined by the min_cells_per_lambda
variable.

6.11 Recording

Angora can record field values computed during a simulation into a file in a variety of
ways. Field values can be recorded on a cross-section of the grid, along a line through the
grid, or at a given point in the grid. Currently, Angora only supports the recording of the
electric or the magnetic field. Recording of other field-related quantities such as energy,
flux, Poynting’s vector, etc. will be implemented in the future. Please send any comments,
suggestions, and requests to help@angorafdtd.org.

[Global variable]string recorder_output_dir (default: "recorder")
This determines the subdirectory in which all the recording-related stuff will be placed.
Unless it has a slash ‘/’ up front; this path is interpreted as being relative to output_

dir (see Section 6.12 [Paths], page 86).

mailto:help@angorafdtd.org
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recorder_output_dir = "recorder";

Recorder:

{

...

...

};

[Global variable]group Recorder
The Recorder group contains the sub-variables related to different types of field
recording. These are explained in the following subsections.

Recorder:

{

MovieRecorders:

(

{

...

...

}

);

LineRecorders:

(

{

...

...

}

);

FieldValueRecorders:

(

{

...

...

}

);

};

6.11.1 Movie Recording

Angora can record field components on a two-dimensional cross section of the grid into a
custom movie file. The binary format used for movie recording is described in more detail
in Section 6.11.1.1 [Movie File Format], page 77.

[Sub-variable of Recorder]string movie_recorder_output_dir (default: "")
This determines the subdirectory in which all the recorded movie files will be placed.
Unless it has a slash ‘/’ up front; this path is interpreted as being relative to recorder_
output_dir (see [recorder output dir], page 73).

Recorder:

{

movie_recorder_output_dir = "movies";
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MovieRecorders:

(

...

...

);

};

[Sub-variable of Recorder]list MovieRecorders
Field values on a two-dimensional cross section of the FDTD grid can be recorded
using the MovieRecorders list.

Recorder:

{

MovieRecorders:

(

{

recorded_section = "xz";

recorded_position = 0;

recorded_component = "Ex";

recording_scale = "dB";

recording_type = "uchar1";

movie_dir = "this_movie_dir";

movie_file_name = "MovieFile"

movie_file_extension = "amv";

append_group_index_to_file_name = true;

only_records_material_info = false;

},

{

...

...

}

);

};

[Sub-variable of MovieRecorders]string recorded_section
This determines the cross section of the grid over which the field is recorded.
Currently, only xz, yz, and xy cross sections are supported. These are repre-
sented by the string values "xz", "yz", and "xy", respectively.

[Sub-variable of MovieRecorders]floating-point recorded_position
(units: m)

[Sub-variable of MovieRecorders]integer recorded_position_in_cells
This value specifies the coordinate of the recorded cross section along the per-
pendicular direction (e.g., the z direction if recorded_section is "xy"). The
coordinate is relative to the grid origin (see Section 6.2.6 [Coordinate Origin],
page 16). The units are either in meters or grid cells. For the latter, the _

in_cells suffix should be appended to the variable name. If the coordinate
corresponds to a non-integer cell position, the closest integer position is chosen.



Chapter 6: Configuration Variables 76

[Sub-variable of MovieRecorders]string recorded_component
An individual movie recorder (in a group delineated by the curly brackets ‘{}’)
only records a single scalar value extracted from the vector-valued electromag-
netic field. This could be one of the Cartesian components or the absolute
value of the electric or the magnetic field. These are represented by the string
values "Ex", "Ey", "Ez", "E", "Hx", "Hy", "Hz", and "H". If you would like
to record multiple Cartesian components of a vector field, simply add other
movie recorders (i.e., other groups, see Section 5.2.5 [Groups], page 11) to the
MovieRecorders list with the desired recorded_component values.

[Sub-variable of MovieRecorders]string recording_scale
If "linear", the raw values are recorded. If "absolute", the absolute value is
taken before recording. If "dB", the decibel value (20 log10(| · |)) is recorded.

[Sub-variable of MovieRecorders]string recording_type
Movies can either be recorded either in raw floating-point format, or in a single-
byte compressed format. This is specified by assigning the string values "dbl8"
or "uchar1" to the recording_type variable, respectively. Using the single-
byte format reduces the file size considerably, but results in some data loss.

If recording_type is "dbl8", then the field values are recorded in 8-byte
double datatype, after processed in accordance with the recording_scale

specification above. This provides practically lossless recording, albeit with
increased computational burden and file size.

With the "uchar1" option, the field values are reduced to 256 discrete bins
within a fixed dynamic range. This requires only a single byte per field value;
reducing the storage requirement by a factor of 8.

• If recording_type is "dB", the maximum and minimum values in this
dynamic range are determined by the global variables max_field_value

and dB_accuracy (see Section 6.2.7 [Dynamic Range], page 17):

max : 20 log10(|max field value|) min : 20 log10(|max field value|) + (dB accuracy)

The dB_accuracy variable should always be negative; therefore the mini-
mum value in the dynamic range is lower than the maximum.

• If recording_type is "linear" or"absolute", the maximum and mini-
mum values are determined only by the global variable max_field_value

(see Section 6.2.7 [Dynamic Range], page 17):

max : max field value min : (−max field value) or 0

[Sub-variable of MovieRecorders]string movie_dir (default: "")
This determines the subdirectory in which this individual movie file will be
placed. Unless it has a slash ‘/’ up front; this path is interpreted as be-
ing relative to movie_recorder_output_dir (see [movie recorder output dir],
page 74). By default, no subdirectory is created inside movie_recorder_

output_dir.
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[Sub-variable of MovieRecorders]string movie_file_name (default:
"MovieFile")

This determines the base string in the full name of the movie file. Other in-
formation is appended to the name of the file to differentiate individual movie
files (see the example below).

[Sub-variable of MovieRecorders]string movie_file_extension (default:
"amv")

This is the extension of the movie file name. If assigned the value "", no
extension is added to the file.

Here is an example movie file name:

MovieFile_Ex_0_1.amv

The base string in the name of the file ("MovieFile") is specified by the movie_

file_name variable. The second part of the file name, "Ex", is determined by
the recorded field component. The two integers that follow are the run index (see
Section 6.14 [Multiple Simulation Runs], page 87) and the index of the movie inside
the MovieRecorders list. For example, if there are two groups (two movies) in the
MovieRecorders list, the first one will write into

MovieFile_Ex_0_0.amv

while the second will write into

MovieFile_Ex_0_1.amv

If there are two simulation runs (i.e., number_of_runs is equal to 2 – see Section 6.14
[Multiple Simulation Runs], page 87), then the files created in the second run will
have 1 instead of 0 as the first integer in the above file names. Finally, the extension
("amv") of the movie files is determined by the variable movie_file_extension.

[Sub-variable of MovieRecorders]boolean
append_group_index_to_file_name (default: true)

If this is set to false, the second integer in the filename (see above) and the
underscore preceding it are not included in the filename. It is set to true by
default. If this variable is set to false and there are multiple groups (movie
recorders), there will be a name clash, and the output will be undefined.

[Sub-variable of MovieRecorders]boolean only_records_material_info
(default: false)

If set to true, only the material information is recorded into the file, and no
field recording is performed during the simulation.

6.11.1.1 Movie File Format

Angora records movies in a custom binary format for better speed and performance. Please
be aware that this format is subject to modification. The changes in the format will be
documented in this manual as necessary. You may refer to the ‘ChangeLog’ file in the
Angora distribution for recent changes in the movie recording format.

The MATLAB script ‘angora_movie.m’, distributed as part of the Angora package, reads
an Angora movie file and displays it as a MATLAB movie. It can also save the movie in AVI
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format. This script is installed in the directory ‘$(prefix)/share/angora/’ (see Chapter 3
[Compilation and Installation], page 7). If Angora was installed without any $(prefix)

configuration option, the default location is ‘/usr/local/share/angora/’. This script can
also be downloaded directly from the Angora website (link here).

The movie file is composed of chunks of data, ordered as follows. For each chunk, a
short explanation (and maybe an alias) is given, followed by a description of the datatype
in parantheses.

• major package version (integer, 4 bytes)

• minor package version (integer, 4 bytes)

• package revision number (integer, 4 bytes)

• number of bytes used to record each field component (integer, 4 bytes): This is either
equal to 1 or 8, depending on the recording_type variable.

• spatial step size (double, 8 bytes)

• temporal step size (double, 8 bytes)

• time value that corresponds to the beginning of the simulation (double, 8 bytes): This
is usually a negative value, since time waveforms frequently begin before t=0.

• maximum value in the field discretization range (double, 8 bytes): This is the maximum
value in the discretization dynamic range for single-byte recording (i.e., recording_
type is "uchar1"). If recording_type is "dbl8", this value is irrelevant. Same applies
to the next value in the file.

• minimum value in the field discretization range (double, 8 bytes)

• ‘length_1’: length along the first dimension of the recorded array (integer, 4 bytes): If
the xy section were recorded, this would be the length of the array in the x dimension.
This includes the thickness of the PML sections in both directions.

• ‘length_2’: length along the second dimension of the recorded array (integer, 4 bytes):
If the xy section were recorded, this would be the length of the array in the y dimension.
This includes the thickness of the PML sections in both directions.

• ‘length_time’: number of time steps in the simulation (integer, 4 bytes)

• thickness of the PML region, in grid cells (integer, 4 bytes): See Section 6.2.4 [Perfectly-
Matched Layer (PML)], page 15 for more information on the PML. The PML sections
are included in the recorded cross sectional area. They can easily be removed in post-
processing.

• an array of length length_1 with the actual physical coordinates (in m) along the first
dimension of the recorded cross section (double, 8 bytes)

• an array of length length_2 with the actual physical coordinates (in m) along the
second dimension of the recorded cross section (double, 8 bytes)

• an array of length (length_2 x length_1) holding the relative permittivity (if the
electric field is recorded) or the relative permeability (if the magnetic field is recorded)
values on the recorded cross section (double, 8 bytes): In Figure 6.9, it is assumed that
the xy section is recorded, and the field positions are numbered from 0 to 11. It is
seen that the second dimension (here, the y-dimension) is looped through first. These
positions are laid out in the movie file in the same order:

http://www.angorafdtd.org/scripts.html
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Figure 6.9: The layout of the field positions on the recorded cross section in the movie
file.

• an array of length (length_2 x length_1) holding the electric conductivity values
(in Siemens/m, if the electric field is recorded) or the magnetic conductivity values
(in Ohm/m, if the magnetic field is recorded) on the recorded cross section (double,
8 bytes): The 2D cross section is laid out in the movie file in the same way as the
previous array.

• arrays (movie frames) of length (length_2 x length_1) holding the field values on
the recorded cross section (double, 8 bytes OR unsigned char, 1 byte – depending on
recording_type): The total number of these movie frames is equal to length_time,
read earlier from the binary file. Each of these frames is laid out in the movie file in
the same way as the previous arrays.

6.11.2 Line Recording

Angora can record field components along a line into a file. The binary format used for line
recording is described in more detail in Section 6.11.2.1 [Line File Format], page 82.

[Sub-variable of Recorder]string line_recorder_output_dir (default: "")
This determines the subdirectory in which all the recorded line files will be placed.
Unless it has a slash ‘/’ up front; this path is interpreted as being relative to recorder_
output_dir (see [recorder output dir], page 73).

Recorder:

{

line_recorder_output_dir = "lines";
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LineRecorders:

(

...

...

);

};

[Sub-variable of Recorder]list LineRecorders
Recorder:

{

LineRecorders:

(

{

line_orientation = "y_directed";

line_position_x1 = 0;

line_position_x2 = 0;

recorded_component = "Ex";

recording_scale = "linear";

line_dir = "this_line_dir";

line_file_name = "LineFile";

line_file_extension = "aln";

append_group_index_to_file_name = true;

},

{

...

...

}

);

};

[Sub-variable of LineRecorders]string line_orientation
There are three possible orientations for the line over which the field values are
recorded .These orientations are along the three principal axes of the grid;
namely, the x,y, and z directions. These are specified by the strings "x_

directed", "y_directed", and "z_directed", respectively.

[Sub-variable of LineRecorders]floating-point line_position_x1 (units:
m)

[Sub-variable of LineRecorders]integer line_position_x1_in_cells
This is the first of the remaining two coordinates that specify the position of
the recorded line. The coordinate is relative to the grid origin (see Section 6.2.6
[Coordinate Origin], page 16). For example, if the line is oriented in the y
direction (line_orientation is "y_directed"), then line_position_x1_in_

cells specifies the x coordinate of the line. The units are either in meters
or grid cells. For the latter, the _in_cells suffix should be appended to the
variable name. If the coordinate corresponds to a non-integer cell position, the
closest integer position is chosen.



Chapter 6: Configuration Variables 81

[Sub-variable of LineRecorders]floating-point line_position_x2 (units:
m)

[Sub-variable of LineRecorders]integer line_position_x2_in_cells
This is the second of the remaining two coordinates that specify the position of
the recorded line. The coordinate is relative to the grid origin (see Section 6.2.6
[Coordinate Origin], page 16). For example, if the line is oriented in the y
direction (line_orientation is "y_directed"), then line_position_x2_in_

cells specifies the z coordinate of the line. The units are either in meters
or grid cells. For the latter, the _in_cells suffix should be appended to the
variable name. If the coordinate corresponds to a non-integer cell position, the
closest integer position is chosen.

[Sub-variable of LineRecorders]string recorded_component
An individual line recorder (in a group delineated by the curly brackets ‘{}’)
only records a single scalar value extracted from the vector-valued electromag-
netic field. This could be one of the Cartesian components or the absolute value
of the electric or the magnetic field. These are represented by the string values
"Ex", "Ey", "Ez", "E", "Hx", "Hy", "Hz", and "H". If you would like to record
multiple Cartesian components of a vector field, simply add other line recorders
(i.e., other groups, see Section 5.2.5 [Groups], page 11) to the LineRecorders

list with the desired recorded_component values.

[Sub-variable of LineRecorders]string recording_scale
If "linear", the raw values are recorded. If "absolute", the absolute value is
taken before recording. If "dB", the decibel value (20 log10(| · |)) is recorded.

[Sub-variable of LineRecorders]string line_dir (default: "")
This determines the subdirectory in which this individual line file will be placed.
Unless it has a slash ‘/’ up front; this path is interpreted as being relative
to line_recorder_output_dir (see [line recorder output dir], page 79). By
default, no subdirectory is created inside line_recorder_output_dir.

[Sub-variable of LineRecorders]string line_file_name (default:
"LineFile")

This determines the base string in the full name of the line file. Other infor-
mation is appended to the name of the file to differentiate individual line files
(see the example below).

[Sub-variable of LineRecorders]string line_file_extension (default:
"aln")

This is the extension of the line file name. If assigned the value "", no extension
is added to the file.

Here is an example line file name:

LineFile_Ey_Y_0_1.aln

The base string in the name of the file ("LineFile") is specified by the line_file_

name variable. The second part of the file name, "Ey", is determined by the recorded
field component. The following string "Y" indicates the orientation of the line, which
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is y-directed for this example. The two integers that follow are the run index (see
Section 6.14 [Multiple Simulation Runs], page 87) and the index of the line recorder in-
side the LineRecorders list. For example, if there are two groups (two line recorders)
in the LineRecorders list, the first one will write into

LineFile_Ey_Y_0_0.aln

while the second will write into

LineFile_Ey_Y_0_1.aln

If there are two simulation runs (i.e., number_of_runs is equal to 2 – see Section 6.14
[Multiple Simulation Runs], page 87), then the files created in the second run will
have 1 instead of 0 as the first integer in the above file names. Finally, the extension
("aln") of the line files is determined by the variable line_file_extension.

[Sub-variable of LineRecorders]boolean
append_group_index_to_file_name (default: true)

If this is set to false, the second integer in the filename (see above) and the
underscore preceding it are not included in the filename. It is set to true by
default. If this variable is set to false and there are multiple groups (line
recorders), there will be a name clash, and the output will be undefined.

6.11.2.1 Line File Format

As with movies, Angora records the line files in a custom binary format for better speed and
performance. Please be aware that this format is subject to modification. The changes in the
format will be documented in this manual as necessary. You may refer to the ‘ChangeLog’
file in the Angora distribution for recent changes in the line recording format.

The MATLAB script ‘angora_line.m’, distributed as part of the Angora package, reads
an Angora line file and displays it as a MATLAB movie. This script is installed in the direc-
tory ‘$(prefix)/share/angora/’ (see Chapter 3 [Compilation and Installation], page 7).
If Angora was installed without any $(prefix) configuration option, the default location
is ‘/usr/local/share/angora/’. This script can also be downloaded directly from the
Angora website (link here).

The line file is composed of chunks of data, ordered as follows. For each chunk, a short
explanation (and maybe an alias) is given, followed by a description of the datatype in
parantheses.

• major package version (integer, 4 bytes)

• minor package version (integer, 4 bytes)

• package revision number (integer, 4 bytes)

• temporal step size (double, 8 bytes)

• time value that corresponds to the beginning of the simulation (double, 8 bytes): This
is usually a negative value, since time waveforms frequently begin before t=0.

• ‘total_length’: the number of recorded elements on each line snapshot (integer, 4
bytes)

• ‘length_time’: number of time steps in the simulation (integer, 4 bytes)

• thickness of the PML region, in grid cells (integer, 4 bytes): See Section 6.2.4 [Perfectly-
Matched Layer (PML)], page 15 for more information on the PML. The recorded line

http://www.angorafdtd.org/scripts.html


Chapter 6: Configuration Variables 83

includes two PML sections on opposite ends, each with this length. These sections can
easily be removed in post-processing.

• arrays (line snapshots) of length total_length holding the field values on the recorded
line (double, 8 bytes): The total number of these line snapshots is equal to length_

time, read earlier from the binary file.

6.11.3 Field-Value Recording

Angora can record the time history of the field at a given position in the simulation grid. The
format used for this sort of recording is HDF5 (Hierarchical Data Format) (http://www.
hdfgroup.org/HDF5/). The HDF5 format was chosen for its standard interface, and the
availability of free software tools for inspecting and modifying HDF5 output. The HDF5
output created by the field-value recorder is explained in more detail in Section 6.11.3.1
[Field-Value File HDF5 Content], page 85.

[Sub-variable of Recorder]string field_value_recorder_output_dir (default:
"")

This determines the subdirectory in which all the recorded field-value files will be
placed. Unless it has a slash ‘/’ up front; this path is interpreted as being relative to
recorder_output_dir (see [recorder output dir], page 73).

Recorder:

{

field_value_recorder_output_dir = "fieldvalues";

FieldValueRecorders:

(

...

...

);

};

[Sub-variable of Recorder]list FieldValueRecorders
Recorder:

{

FieldValueRecorders:

(

{

coord_x = 0;

coord_y = 0;

coord_z = 0;

recorded_component = "Ex";

recording_scale = "linear";

field_value_dir = "this_field_value_dir";

field_value_file_name = "FieldValueFile";

field_value_file_extension = "hd5";

append_group_index_to_file_name = true;

},

{

...

http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
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...

}

);

};

[Sub-variable of FieldValueRecorders]floating-point coord_x (units: m)

[Sub-variable of FieldValueRecorders]integer coord_x_in_cells
This is the x coordinate of the recorded position in the simulation grid. It is
relative to the grid origin (see Section 6.2.6 [Coordinate Origin], page 16). The
units are either in meters or grid cells. For the latter, the _in_cells suffix
should be appended to the variable name. If the coordinate corresponds to a
non-integer cell position, the closest integer position is chosen.

[Sub-variable of FieldValueRecorders]floating-point coord_y (units: m)

[Sub-variable of FieldValueRecorders]integer coord_y_in_cells
This is the y coordinate of the recorded position in the simulation grid. It is
relative to the grid origin (see Section 6.2.6 [Coordinate Origin], page 16). The
units are either in meters or grid cells. For the latter, the _in_cells suffix
should be appended to the variable name. If the coordinate corresponds to a
non-integer cell position, the closest integer position is chosen.

[Sub-variable of FieldValueRecorders]floating-point coord_z (units: m)

[Sub-variable of FieldValueRecorders]integer coord_z_in_cells
This is the z coordinate of the recorded position in the simulation grid. It is
relative to the grid origin (see Section 6.2.6 [Coordinate Origin], page 16). The
units are either in meters or grid cells. For the latter, the _in_cells suffix
should be appended to the variable name. If the coordinate corresponds to a
non-integer cell position, the closest integer position is chosen.

[Sub-variable of FieldValueRecorders]string recorded_component
An individual field-value recorder (in a group delineated by the curly brackets
‘{}’) only records a single scalar value extracted from the vector-valued electro-
magnetic field. This could be one of the Cartesian components or the absolute
value of the electric or the magnetic field. These are represented by the string
values "Ex", "Ey", "Ez", "E", "Hx", "Hy", "Hz", and "H". If you would like
to record multiple Cartesian components of a vector field, simply add other
field-value recorders (i.e., other groups, see Section 5.2.5 [Groups], page 11) to
the FieldValueRecorders list with the desired recorded_component values.

[Sub-variable of FieldValueRecorders]string recording_scale
If "linear", the raw values are recorded. If "absolute", the absolute value is
taken before recording. If "dB", the decibel value (20 log10(| · |)) is recorded.

[Sub-variable of FieldValueRecorders]string field_value_dir (default: "")
This determines the subdirectory in which this individual field-value
file will be placed. Unless it has a slash ‘/’ up front; this path is
interpreted as being relative to field_value_recorder_output_dir (see
[field value recorder output dir], page 83). By default, no subdirectory is
created inside field_value_recorder_output_dir.



Chapter 6: Configuration Variables 85

[Sub-variable of FieldValueRecorders]string field_value_file_name
(default: "FieldValueFile")

This determines the base string in the full name of the field-value file. Other
information is appended to the name of the file to differentiate individual field-
value files (see the example below).

[Sub-variable of FieldValueRecorders]string
field_value_file_extension (default: "hd5")

This is the extension of the field-value file name. If assigned the value "", no
extension is added to the file. The HDF5 extension "hd5" is applied by default.

Here is an example field-value file name:

FieldValueFile_Ex_0_1.hd5

The base string in the name of the file ("FieldValueFile") is specified by the field_
value_file_name variable. The second part of the file name, "Ex", is determined by
the recorded field component. The two integers that follow are the run index (see
Section 6.14 [Multiple Simulation Runs], page 87) and the index of the field-value
recorder inside the FieldValueRecorders list. For example, if there are two groups
(two field-value recorders) in the FieldValueRecorders list, the first one will write
into

FieldValueFile_Ex_0_0.hd5

while the second will write into

FieldValueFile_Ex_0_1.hd5

If there are two simulation runs (i.e., number_of_runs is equal to 2 – see Section 6.14
[Multiple Simulation Runs], page 87), then the files created in the second run will
have 1 instead of 0 as the first integer in the above file names. Finally, the extension
("hd5") of the line files is determined by the variable field_value_file_extension.

[Sub-variable of FieldValueRecorders]boolean
append_group_index_to_file_name (default: true)

If this is set to false, the second integer in the filename (see above) and the
underscore preceding it are not included in the filename. It is set to true by
default. If this variable is set to false and there are multiple groups (field-value
recorders), there will be a name clash, and the output will be undefined.

6.11.3.1 Field-Value File HDF5 Content

The HDF5 file created as the output of the field-value recorder can be viewed and modified
using freely-available tools. One of these tools is HDFView, provided by the HDF Group.
MATLAB also has built-in functions and tools that handle HDF5 files. For reference,
a MATLAB script named ‘angora_fieldvalue.m’ is distributed as part of the Angora
package, which reads an Angora field-value file and plots the recorded waveform. This script
is installed in the directory ‘$(prefix)/share/angora/’ (see Chapter 3 [Compilation and
Installation], page 7). If Angora was installed without any $(prefix) configuration option,
the default location is ‘/usr/local/share/angora/’. This script can also be downloaded
directly from the Angora website (link here).

The HDF5 datasets in the field-value file are the following:

http://www.hdfgroup.org/hdf-java-html/hdfview/
http://www.angorafdtd.org/scripts.html
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• ‘angora_version’: An integer array of length 3 with the major version, minor version,
and revision numbers of the Angora package used to create the file.

• ‘time_step’: A floating-point value specifying the temporal step in the simulation (in
sec).

• ‘initial_time_value’: A floating-point value specifying the time value corresponding
to the beginning of the simulation (in sec). This is usually a negative value, since time
waveforms frequently begin before t=0.

• ‘field_values’: A 1-D floating-point array with the recorded field values.

6.12 Paths

[Global variable]string angora_basepath (default: ".")
This variable specifies the base directory for all the input-output operations in Angora.
If there is no slash ‘/’ in front of the path, it is interpreted as a relative path starting
from the working directory (i.e, the one from which Angora is launched.)

Any other input or output directory will be assumed relative to angora_basepath.
An overarching exception is when a directory is specified with a slash ‘/’ up front;
in which case that directory will be taken as an absolute path, and not relative to
angora_basepath.

[Global variable]string output_dir (default: "output")
This is the base directory for all the output that will result from Angora. It is
interpreted as being relative to angora_basepath, unless it is preceded by a slash ‘/’.
All other output directories are created as subdirectories of this directory.

Example:

angora_basepath = "angora_stuff";

output_dir = "data";

With these variable assignments, all the output will be written into subdirectories
within ‘./angora_stuff/data/’.

[Global variable]string input_dir
This is the base directory for all the input that will be read by Angora. It is interpreted
as being relative to angora_basepath, unless it is preceded by a slash ‘/’. Unless the
path to an input file is absolute (i.e., preceded by a slash ‘/’), it is interpreted as
being relative to input_dir.

Example:

angora_basepath = "angora_stuff";

input_dir = "input_data";

With these variable assignments, the input base directory becomes
‘./angora_stuff/input_data/’.

6.13 Logging

You can keep a log of the simulations run by Angora in a log file, which contains several lines
of information for each simulation. First, an estimate of the finishing time and duration of
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the simulation is written into the log entry. The actual finishing time and duration is added
to the log entry upon completion of the simulation.

Here is an example entry for a simulation in the log file:

johndoe started Angora on 02/22/12 11:54:36AM

Estimated to finish on 02/22/12 11:54:42AM

Estimated duration : 6 seconds.

Simulation finished on 02/22/12 11:54:42AM

Elapsed time : 6 seconds.

[Global variable]boolean enable_logging (default: "true")
If set to ‘true’, Angora will keep a record of the simulations that it runs in a log
file. The name of this log file is specified by the log_file_name variable, and the
directory in which this file resides is specified by the log_output_dir variable.

[Global variable]string log_file_name (default: "angora.log")
This is the name of the Angora log file. It resides in the directory specified by the
log_output_dir variable.

[Global variable]string log_output_dir (default: "log")
This is the directory in which the Angora log file is kept. Unless it is preceded
by a slash ‘/’, it is taken as relative to the base output directory output_dir (see
Section 6.12 [Paths], page 86).

6.14 Multiple Simulation Runs

A number of consecutive Angora simulations can be set up in a single configuration file.

[Global variable]integer number_of_runs (default: 1)
The number of simulation runs is specified by the number_of_runs variable. The
simulation runs (or runs for short) are indexed from 0 to number_of_runs-1. You
can refer to these indices later in the configuration file for enabling or disabling certain
configuration variables for certain runs (see [enabled for runs], page 88).

[Global variable]integer-array disabled_runs (default: none)
This array of integers (see Section 5.2.6 [Arrays], page 12) lists the run indices for
simulations that will be skipped.

Example:

disabled_runs = [1,2,3,4,5];

If number_of_runs was 7, the above variable will cause only the simulations with
indices 0 and 6 to be run.

[Global variable]integer-array disabled_run_range (default: none)
If you would like to disable simulations that correspond to a range of run indices, you
can use this variable. This has to be an array of integers with only two elements (see
Section 5.2.6 [Arrays], page 12). Simulations with run indices between (and including)
these two integers will be skipped.

The following variable assignment has the same effect as the one in the previous
example:

disabled_run_range = [1,5];
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[Sub-variable of any group]integer-array enabled_for_runs (default: all)

[Sub-variable of any group]integer-array enabled_for_run_range (default:
all)

Certain variables can be enabled or disabled for any of the simulation runs using the
enabled_for_runs or enabled_for_run_range arrays. These arrays can be used
inside any group structure (see Section 5.2.5 [Groups], page 11) to specify the run
indices for which that group is enabled.

The enabled_for_runs array simply lists the run indices for which the specific group
is enabled. For example,

number_of_runs = 4;

PointSources:

(

{

//point source #1

enabled_for_runs = [0,1,2];

coord_x_in_cells = 0;

coord_y_in_cells = 0;

coord_z_in_cells = 0;

source_orientation = "x_directed";

waveform_tag = "waveform1";

},

{

//point source #2

enabled_for_runs = [3];

coord_x_in_cells = 0;

coord_y_in_cells = 0;

coord_z_in_cells = 0;

source_orientation = "x_directed";

waveform_tag = "waveform2";

}

);

In this example, each group represents a collection of variable assignments that char-
acterize an individual point source. With the enabled_for_runs variables set as
shown, simulations 0, 1, and 2 will be run with the first point source; whereas simu-
lation 3 will be run with the second point source.

Alternatively, the enabled_for_run_range array can be used to specify a range of
run indices for which the group is enabled. This should be an integer array of length
two. It specifies the lower and upper limits of the range of run indices for the specific
group. For example,

number_of_runs = 10;

PointSources:

(

{

enabled_for_run_range = [0,5];

coord_x_in_cells = 0;
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coord_y_in_cells = 0;

coord_z_in_cells = 0;

source_orientation = "x_directed";

waveform_tag = "waveform1";

}

);

This point source will only be enabled for run indices 0, 1, 2, 3, 4, and 5.

6.15 Miscellaneous

6.15.1 Auto-Saving the Configuration

Angora can automatically save a record of every simulation configuration that it processes.

[Global variable]boolean auto_save_cfg (default: "false")
If set to ‘true’, Angora will automatically write every simulation configuration it runs
into another configuration file, and save it in the directory specified by cfg_output_

dir. A time/date string is appended to the name of the saved file to differentiate
between subsequent executions of the same configuration file.

[Global variable]string cfg_output_dir (default: "cfg")
This is the directory in which the auto-saved configuration files are placed. Unless it is
preceded by a slash ‘/’, it is taken as relative to the base output directory output_dir

(see Section 6.12 [Paths], page 86).
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